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SCALE PARAMETER ESTIMATION OF DISCRETE SCALE

INVARIANT PROCESSES

Estimating the scale parameter of a continuous-time discrete scale invariant (DSI)

process is one of the fundamental problems in the literature. We present an efficient
estimation method which is based on transforming the DSI process into a vector-

valued self-similar process and allows us to obtain the structure of the covariance

matrix, which is the product of a scale and a block-Toeplitz matrices, and its block
size depends on the unknown scale parameter. Therefore, we sweep the block size and

obtain the maximum likelihood (ML) estimate of the scale parameter. We show that,

the ML estimator does not directly solve the scale estimation problem. Hence, we
penalize the likelihood following an information theoretic approach. The performance

of the estimation method is studied via simulation. Finally this method is applied
to the real data of S&P500 and Dow Jones indices for some special periods.

1. Introduction

Scale invariance (or self-similarity), as an important feature, often are used as a fun-
damental property to interpret many natural and man-made phenomena like turbulence
of fluids, textures in geophysics, telecommunications of network traffic, image processing,
fluctuations of stock market, · · · [3]. Scale invariance is often described as a symmetry
of the system relatively to a transformation of a scale, that is mainly a dilation or a
contraction (up to some re-normalization) of the system parameters [3]. Discrete scale
invariance (DSI) is a property which requires invariance by dilation for certain preferred
scaling factors [18]. This characteristic feature of such process is the invariance of its
finite dimensional distributions by certain dilation for specific scaling factor. Burnecki
et.al. [6] and Borgnat et.al. [4] have studied the property of DSI and its relation to
periodically correlated processes by means of the Lamperti transformation. It is known
that DSI leads to log-periodic corrections to scaling. Log-periodic oscillations have been
used to predict price trends, turbulent time series, multi-fractal measures and crashes on
financial markets [8], [9]. For a wide reference in this regard see [10].

Estimating the scale parameter of DSI processes is one of the fundamental problems
in the literature. Modarresi and Rezakhah [13] presented an iterative method for scale
estimation of DSI processes with stationary increments. There are various open issues
and vivid discussions about the estimation of scale parameter but still there is not a
universal method which could be considered as the most promising method to find the
best approximation of scale parameter in all cases [13].

This paper provides a new method to estimate the scale parameter λ of a continuous-
time DSI process with scale grater than one. The estimation method is based on the
work of Ramirez et.al [14] in estimating the cycle period of a periodically correlated
process. To estimate the scale parameter λ, first we consider some geometrical sampling
of a continuous-time DSI process at points αk, k ∈ W = {0, 1, · · · }, such that λ = αq

[11], and q is the number of sample points in scale intervals [λn−1, λn), n ∈ N. The
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estimation method is based on obtaining the ML estimate of the scale parameter λ for a
fix α. Then, it is shown that the optimal α, in the sense of minimizing the mean squares
of errors (MSE), is between 1.1 and 1.2.

By imposing the sampling scheme, we provide some discretization of a continuous-time
DSI process. This sampling has the advantage to have a corresponding multi-dimensional
self-similar process [11]. Then, by stacking N realizations of the multi-dimensional self-
similar process into a vector, we obtain the structure of the covariance matrix, which
is a Schur product of a scale matrix to a block-Toeplitz matrix. By sweeping the block
size of the block-Toeplitz matrix, which depends on the number of sample points, q, in
successive scale intervals, we obtain the ML estimate of the scale parameter. However,
it is shown that the ML estimator does not directly solve the estimation problem, and
it is therefore necessary to add a penalty term. Following [14], we use an information
theoretic criterion to penalize large values of the scale parameter. Specifically, we used
the minimum description length criterion [17], which provides us a better estimate than
the ML approach.

Let {X(t), t ∈ R+} be a continuous-time DSI process with scale λ > 1. By consid-
ering the geometrical sampling scheme, which enables one to have q sample points at
1, α, · · · , αq−1 in the first scale interval [1, λ), where λ = αq, and following the sam-
pling at corresponding points {αnq+j , n ∈ N, j = 0, · · · , q − 1} in the other scale in-

tervals [λn−1, λn), we would have the sampled DSI process {X(t), t ∈ T̆} where T̆ =
{αnq+j , n ∈ W, j = 0, · · · , q − 1}. By embedding the sampled DSI process X(.) in q
columns, an embedded multi-dimensional self-similar process is obtained which is de-
noted by U(λn) = (U0(λn), · · · , Uq−1(λn)) where U j(λn) ≡ X(αnq+j). To facilitate
such study, the subsidiary multi-dimensional self-similar process [12] is considered which
is obtained by re-indexing consecutive observation of the embedded multi-dimensional
self-similar process with successive positive integers as V (n) = (V 0(n), · · · , V q−1(n)),
where V j(n) ≡ U j(λn). These arrangements provide a suitable platform to obtain the
ML estimate of λ. The main tool we use in the estimation method, is the relationship
between the sampled DSI process X(.) and the subsidiary multi-dimensional self-similar
process V (.). However, the ML estimator does not directly solve the scale estimation
problem. By an example we show that, there are some peaks in the log-likelihood func-
tion for some values of q. Hence, we penalize the likelihood following an information
theoretic approach, similar to that in [14].

This paper is organized as follows. Section 2, provides a background on embedded
and subsidiary multi-dimensional self-similar processes and their covariance structures.
In Section 3, the estimation method for scale parameter λ is presented. In Section 4, the
performance of the estimation method is studied via simulation. Finally this method is
applied to the real data of S&P500 and Dow Jones indices for some special periods.

2. Preliminaries

In this section we review the definition of embedded and subsidiary multi-dimensional
self-similar processes and their covariance matrix structures.

Definition 2.1. A process {X(t), t ∈ R+} is said to be self-similar (or scale invariant),
if for any λ > 0

(1) {λ−HX(λt), t ∈ R+} ≡ {X(t), t ∈ R+}
where ≡ means equality in all finite dimensional distributions. The process is said to be
DSI of index H and scaling factor λ0 > 0, if (1) holds for λ = λ0.

For a continuous-time DSI process {X(t), t ∈ R+} with scale λ > 1, if we consider

sampling of the process at points of set T̆ = {αnq+j : n ∈ W, j = 0, · · · , q − 1}, then

X(.) with parameter space T̆ is called sampled DSI process [11].
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Definition 2.2. The process U(t) = (U0(t), U1(t), · · · , Uq−1(t)), with parameter space

T̆ = {λn, n ∈W} is a multi-dimensional self-similar process, where

(i) {U j(.)} for every j = 0, · · · , q − 1 is self-similar with parameter space T̆ = {λn, n ∈
W}.
(ii) For every n, τ ∈ Z, j, k = 0, · · · , q − 1

Cov(U j(λn+τ ), Uk(λn)) = λ2nHCov(U j(λτ ), Uk(1)).

For a sampled DSI process {X(t), t ∈ T̆} with scale λ > 1 and parameter space

T̆ , the process U(λn) = (U0(λn), U1(λn), · · · , Uq−1(λn)) is called an embedded multi-
dimensional self-similar process, where U j(λn) ≡ X(αnq+j) [12]. Corresponding to such
an embedded multi-dimensional self-similar process, Modarresi and Rezakhah [12] defined
a subsidiary q-dimensional self-similar process V (n) as

V (n) = (V 0(n), V 1(n), · · · , V q−1(n)), n ∈W,

where V (n) ≡ U(λn).

Remark 2.1. The covariance matrix of V (n) is denoted by

RH(n, τ) = [RHj,k(n, τ)]j,k=0,··· ,q−1

where

RHj,k(n, τ) = E[V j(n+ τ)V k∗(n)] = E[X(α(n+τ)q+j)X∗(αnq+k)].

By the DSI property of the process X(.) we have that

(2) RHj,k(n, τ) = λ2nHE[X(ατq+j)X∗(αk)] = λ2nHRHj,k(τ),

where RHj,k(τ) = RHj,k(0, τ) = E(V j(τ)V k∗(0)).

See [12].

3. Scale Parameter Estimation

In this section, we present a new method for scale parameter estimation of a continuous-
time DSI process with scale λ > 1. The estimation method is compatible for real world
data, and its motivation comes from the cycle period estimation of a periodically cor-
related process, proposed by Ramirez et.al. [14]. In this method, we obtain the ML
estimator of λ. Then, by an example of a Weierstrass-Mandelbrot process, we show that
the estimator cannot be directly applied. Therefore, we penalize the likelihood following
an information theoretic approach, similar to that in [14].

Let the continuous-time DSI process {X(t), t ∈ R+}, is zero-mean complex-valued
Gaussian. By imposing the sampling scheme, which provides samples at q points 1, α, · · · ,
αq−1 in the first scale interval [1, λ), where λ = αq, and at multiple λn of such points

in the scale intervals [λn, λn+1), n ∈ N, we have the sampled DSI process {X(t), t ∈ T̆}
where T̆ = {αnq+j , n ∈W, j = 0, · · · , q − 1}.

First, for a fixed α, we would like to derive the ML estimator of λ. Thus, the estimation
problem is reduced to finding the ML estimator of q. To this end, we first assume that the
number of sample points in each scale interval, q, is known. Then, we arrange the sampled
DSI process X(t) in blocks of size q, which provides an embedded multi-dimensional self-
similar process U(λn) = (U0(λn), · · · , Uq−1(λn)), n ∈ W, where U j(λn) ≡ X(αnq+j).
By re-indexing consecutive observation of the embedded multi-dimensional self-similar
process with successive positive integers, the subsidiary q-dimensional self-similar process
V (n) = (V 0(n), · · · , V q−1(n)) is obtained where V j(n) ≡ U j(λn) [12]. Now, we stack N
realizations of V (n) into the vector

z = [V ′(0) V ′(1) · · · V ′(N − 1)]′,
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Figure 1. Likelihood function (a), and MDL criterion (b) for q = 5 (blue line) and
q = 7 (red dashed line).

which is the stack of Nq samples of X(t). Thus, the covariance matrix of z is of the form

C =


RH(0) RH(−1) . . . RH(−N + 1)
RH(1) λ2HRH(0) . . . λ2HRH(−N + 2)
. . . .
. . . .
. . . .

RH(N − 1) λ2HRH(N − 2) . . . λ2(N−1)HRH(0)

 ,

where RH(τ) = [RHj,k(τ)]j,k=0,···q−1, and RHj,k(τ) = E(V j(τ)V k∗(0)).
The covariance matrix C can be represented as a Schur product of a scale matrix Λ

to a block-Toeplitz matrix C0 with block-size q, as C = Λ ◦ C0, where Λ = (Λ0 ⊗ Iq),
and Iq is identity matrix of size q:

Λ0 =


1 1 . . . 1
1 λ2H . . . λ2H

. . . .

. . . .

. . . .
1 λ2H . . . λ2(N−1)H

 ,

C0 =


RH(0) RH(−1) . . . RH(−N + 1)
RH(1) RH(0) . . . RH(−N + 2)
. . . .
. . . .
. . . .

RH(N − 1) RH(N − 2) . . . RH(0)

 .

Furthermore, the observations z are distributed as

f(z; q,C) =
1

(2π)Nq/2 |C|1/2
exp{−z′C−1z/2}.
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Figure 2. (a) Mean square error of scale parameter estimator in 100 repetitions of a
Weierstrass-Mandelbrot process in Example 1 for α = 1.15 and different values of q. (b)
MSE of scale parameter estimation for S&P500 indices (blue line) from 16/10/2000 until
23/7/2002, where λ was evaluated approximately with 1.66 in [16]; and Dow Jones indices
from 6/3/2009 until 14/11/2012 where λ was evaluated approximately with 1.493 in [16]
(red dashed line), versus different values of α. The plot shows that the optimal α in the
sense of minimizing the mean squares of errors, is between 1.1 and 1.2.

3.1. Maximum Likelihood and Minimum Description Length estimators.
Now, to derive the ML estimator, we proceed as follows: By assuming M indepen-

dent and identically distributed realizations of z, {zm}M−1
m=0 , we compute the likelihood

function for a fixed q. Then by sweeping q, we obtain the value that maximizes the
likelihood

L(q,C) :=

M∏
m=0

f(zm; q,C) =
1

(2π)NqM/2 |C|M/2
exp{−1/2

M∑
m=0

z′mC−1zm}.

Thus, we have that

(3) l(q) := lnL(q, Ĉ) = −NMq

2
(ln(2π) + 1)− M

2
ln |Ĉ|,

where Ĉ is the sample covariance matrix Ĉ = 1
M

∑M−1
m=0 zmz

∗
m. Hence, the ML estimator

of q is given by the value of q that maximizes the log-likelihood (3).
However, the ML estimator does not directly solve the scale estimation problem. The

following example shows that, there are some peaks in the log-likelihood function for
some values of q. Hence, we penalize the likelihood following an information theoretic
approach, similar to that in [14].

Example 3.1. Consider a Weierstrass-Mandelbrot process

(4) X(t) =

∞∑
n=−∞

λ−nH(1− eiλ
nt)eiφn ,

with scale λ > 1 and 0 < H < 1, where the φn’s are i.i.d. random variables uniformly
distributed on [0, 2π) [3]. With the indicated restrictions on λ and H, the series (4)
converges almost surely [2], [5]. Imposing the sampling scheme with α = 1.2, we apply
the method to estimate q in two cases: q = 5, 7, with H = 0.5, N = 100 and M = 25.
First, we consider a case where q = 5: As we may see in Figure 1 (a) with blue line,
there are clear peaks at q = 5 and its multiples 10, 15. Also, for the case q = 7 there
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Figure 3. (a) Mean square error of the MDL scale parameter estimator of a
Weierstrass-Mandelbrot process in Example 1, for q = 4, H = 0.5, α = 1.15 and different
values of N . As the sample size N grows, the MDL estimator converges to true value of
λ. (b) The non-overlapping block bootstrap confidence interval of the MDL estimator of a
Weierstrass-Mandelbrot process in Example 1, for H = 0.5, α = 1.15 and different values
of q (blue dashed lines), and true value of λ (red dotted line).

are some peaks at q = 4, 7, 9, 14, indicated with red dashed line. Hence, to obtain the
true estimation of q, a penalty term is necessary to consider. Following [14], we use
an information theoretic criterion to penalize large values of q. Specifically, we use the
minimum description length (MDL) criterion [17], which provides us a better estimate
than the ML approach. The MDL criterion for our problem is given by

(5) MDL(q) = −l(q) +
1

2
β lnM

= NMq/2(ln(2π) + 1) +M/2 ln |Ĉ|+ 1

2
β lnM.

where β is the number of degrees of freedom of the model, which is β = Nq2 [14]. Thus,
the MDL-based estimator is

(6) q̂ = arg minq=1,··· ,qmax
MDL(q).

The blue line in Figure 1 (b), shows the MDL criterion for the case q = 5. In this Figure,
we can observe that the q that minimizes the criterion is q = 5. Also, with red dashed
line, it can be seen that q = 7 minimizes the MDL which is coincide with the true value
of q.

4. Simulations and Empirical Data

The accuracy of the method is investigated for simulated and empirical data. In the
simulation case, to visualize efficiency of the estimation method, we have simulated the
Weierstrass-Mandelbrot process with different scale parameters and presented the graph
of the MSE for different Hurst indices. As it is shown by Figure 2 (a), the method gives
an accurate estimation. Moreover, the consistency of the MDL estimator is illustrated
in Figure 3 (a). In this Figure, the MSE of estimator is computed for different values of
N . Evidently, as the sample size N grows, the MDL estimator converges to true value of
λ = αq. Furthermore, the non-overlapping block bootstrap confidence interval for MDL
estimator is depicted in Figure 3 (b) for α = 1.15, H = 0.5 and different values of q. The
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Figure 4. S&P500 indices from 1/1/2000 until 31/12/2004. The existence of a DSI
behavior is justified from 16/10/2000 until 23/7/2002 in four scale intervals which are
indicated with red lines. The scale of the process for the periods is evaluated approximately
with 1.66 [16].
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Figure 5. Dow Jones indices from 25/10/2001 until 28/5/2014. The existence of a
DSI behavior is justified from 6/3/2009 until 14/11/2012 in four scale intervals which are
indicated with red lines. The scale of the process for the periods is evaluated approximately
with 1.493 [16].

superiority of the method is also investigated for empirical data. To this end, we study
the daily indices of two stock markets: S&P500 and Dow Jones, for some special periods.
First, we consider daily indices of S&P500 from the first January 2000 till the end of
2004. As there is not any index on Saturdays, Sundays and holidays, the available data
for the selected period are 1256 days. The time series of these indices is shown in Figure
4. These data are also studied by Bartolozzi et.al. [1], Rezakhah and Maleki [16] where
the existence of a DSI behavior, in some periods of data has been justified. The indices
from 16th October 2000 until 23th July 2002, which the DSI behavior can be seen in four
scale intervals, was considered by the author in [16], and the preferred scaling factor of
the process for the periods was evaluated approximately with 1.66. Now, we apply the
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proposed method to estimate λ. The scale parameter for α = 1.1 and 1.15 is estimated
about 1.464 and 1.749 respectively.

As an another example, we consider daily indices of Dow Jones from 25th October 2001
till 28th May 2014. Same as the S&P500 indices, there is not any index on Saturdays,
Sundays and holidays, the available data for the selected period are 3168 days. These
indices are plotted in Figure 5, where the existence of a DSI behavior in a period from
6th March 2009 until 14th November 2012 has been justified in four scale intervals, and
the scale parameter λ was evaluated approximately with 1.493 [16]. By applying the
estimation method, the scale parameter λ for α = 1.1 and 1.15 is estimated about 1.335
and 1.520, respectively, which give a good estimations for λ.

5. Conclusion

This paper provides a new method for the scale parameter estimation of a continuous-
time DSI process. In this method, by imposing a geometrical sampling scheme, we obtain
some discretization of the continuous-time process, and then by some precise method we
provide the ML estimate of the scale parameter. The main tool in this method, is the
relationship between the sampled DSI process and a subsidiary multi-dimensional self-
similar process, obtained by arranging the sampled DSI process in blocks of size given
by the number of sample points in scale intervals. However, we showed that the ML
estimator is not a valid estimator. This issue is solved by penalizing large values of the
scale parameter using the MDL criterion. There are various discussions about the scale
parameter estimation but still there is not a universal method which could be considered
as the most promising method to find the best approximation of scale parameter in
all cases. Simulations and numerical evaluations clarified that the proposed method
provided a good estimation for scale parameter. Moreover the estimation method is
easily implemented and computationally fast.
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