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A. A. DOROGOVTSEV AND IA. A. KORENOVSKA

SOME RANDOM INTEGRAL OPERATORS RELATED TO A POINT

PROCESSES

We study some properties of a random integral operator in L2(R) whose kernel is

defined as a convolution of a Gaussian density and a stationary point process.

1. Introduction

Let Θ be a stationary point process on the real line [1]. In this paper we consider
integral operators in L2(R) with the kernel

(1) k(u, v) =
∑
θ∈Θ

p(u− θ)p(v − θ),

where p is some square-integrable function. The problem of investigating of a random
kernel of the kind arises in the theory of stochastic flows. For example, in articles
[2, 3] the strong random operators related to an Arratia flow [4] were introduced. If
{x(u, t), u ∈ R, t ≥ 0} is an Arratia flow then for every f ∈ L2(R) and t > 0 a random
element Ttf in L2(R) is defined by the equality

Ttf(u) = f(x(u, t)), u ∈ R.

It was proved in [2] that Tt is a strong random operator in the Skorokhod sense [5] and it
is not a bounded random operator, though [3]. As is known, the map x(·, t) : R→ R is a
step function with probability one, so one can assert that for any boundedly supported
function f ∈ L2(R) the L2(R)-norm of Ttf equals zero with positive probability. To avoid
such a situation one can consider f ∗ pε, where pε is the density of a normal distribution
with zero mean and variance ε. Then, due to the formula of change of variables for an
Arratia flow [3], one can write down

(2)

∫
R
Tt(f ∗pε)(u)2du =

∑
θ: ∆y(θ,t)>0

∆y(θ, t)

∫
R

∫
R
pε(v1−θ)pε(v2−θ)f(v1)f(v2)dv1dv2,

where {y(u, s), u ∈ R, s ∈ [0; t]} is the conjugated Arratia flow [4]. On the right-hand
side of (2) one may see the quadratic form of the operator similar to (1). Hence, the
knowledge of the properties of (1) can be helpful for investigating the random operators
generated by the stochastic flows. The article continues studying the characteristics of
random operators from [6, 7].

2. Shifts of a Gaussian density along a point process

We will start with the following statement.

Theorem 2.1. Let Θ be a stationary ergodic point process on R [1] and 0 < E|Θ ∩
[ 0; 1) | < +∞. Then there exists an event Ω0 of probability one such that for any ω ∈
Ω0 and a < b the linear span of the functions {pε(u− θ(ω)), θ(ω) ∈ Θ(ω)} is dense in
L2([a; b]).
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Proof. Let us break the proof into several steps.

Lemma 2.1. Let Θ be a stationary ergodic point process on R with 0 < E|Θ∩ [ 0; 1) | <
+∞. Then with probability one ∑

θ∈Θ

1

|θ|
= +∞.

Proof. It is sufficient to prove that

(3)
∑

θ∈Θ∩[ 1;+∞)

1

θ
= +∞ a.s.

Since
∑
θ∈Θ∩[ 1;+∞)

1
θ ≥

∑∞
n=1

1
n+1 |Θ ∩ [n;n+ 1) |, it suffices to show that for a

sequence ξn = |Θ ∩ [n;n+ 1) | the series
∑∞
n=1

1
nξn diverges almost surely. One may

note that {ξn}∞n=0 is a stationary, ergodic, and E|ξ0| < ∞. Hence, due to the ergodic
theorem, for Sn =

∑n
k=0 ξn the following convergence holds

(4)
1

n
Sn → Eξ0, n→∞ a.s.

Thus, with probability one C̃ = supn∈N
1
nSn < +∞, and there exists N ∈ N such that

for any n ≥ N

(5)
1

n
Sn ≥

Eξ0
2
.

One can check that for any m ∈ N

(6)

m∑
k=2

1

k
ξk =

m∑
k=2

(
Sk
k
− Sk−1

k − 1

)
+

m∑
k=2

Sk−1

k(k − 1)
.

Due to (4)

(7)

∞∑
k=2

(
Sk
k
− Sk−1

k − 1

)
≤ 2C̃.

By (5), the series
∑+∞
k=2

Sk−1

k(k−1) diverges, which, by (6) and (7), proves the statement. �

Corollary 2.1. Using Lemma 2.1 and Muntz theorem one may verify that there exists
Ω0 of probability one such that for any ω ∈ Ω0 and 0 < a < b the linear span of the
functions

{
uθ(ω), θ(ω) ∈ Θ(ω)

}
is dense in L2([a; b]).

Corollary 2.2. There exists Ω0 of probability one such that for any ω ∈ Ω0 and a < b
the linear span of the functions

{
eθ(ω)u, θ(ω) ∈ Θ(ω)

}
is dense in L2([a; b]).

Proof. Denote by LS
{
fk, k = 1, n

}
the linear span of f1, . . . , fn. Notice that for any

a < b and f ∈ L2([a; b]) the following relations hold

d
(
f, LS

{
eθu, θ ∈ Θ

})2
L2([a;b])

= inf
cθ

∫ b

a

(
f(u)−

∑
θ∈Θ

cθe
θu

)2

du =

= inf
cθ

∫ eb

ea

(
f(lnu)−

∑
θ∈Θ

cθu
θ

)2
du

u
≤ e−ad

(
f̃ , LS

{
vθ, θ ∈ Θ

})2

L2([ea;eb])
,

where the function f̃(u) = f(lnu) belongs to L2([ea; eb]).
Thus, due to Corollary 2.1, with probability one for any a < b and f ∈ L2([a; b])

d
(
f, LS

{
eθu, θ ∈ Θ

})
L2([a;b])

= 0.

�
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To complete the proof of the theorem let us consider a fixed point θ̃ ∈ Θ, and a linear
bounded operator B on L2([a; b]) such that (Bf) (u) = f(u)h(u), where

h(u) =
1√
2πε

e−
u2

2ε e−
θ̃2

2ε .

Then for any a < b and f ∈ L2([a; b])

d (f, LS {pε(u− θ), θ ∈ Θ})2
L2([a;b]) =

= d
(
B
(
f(u)
√

2πεe
u2

2ε e
θ̃2

2ε

)
, LS

{
B
(
e−

θ̃2−θ2
2ε e

θu
ε

)
, θ ∈ Θ

})2

L2([a;b])
=

= d
(
Bf̃(u), LS

{
Be

θu
ε , θ ∈ Θ

})2

L2([a;b])
,

where f̃(u) = f(u)
√

2πεe
u2

2ε e
θ̃2

2ε . Since B is a bounded linear operator on L2([a; b]), the
inequality

d
(
Bf̃(u), LS

{
Be

θu
ε , θ ∈ Θ

})2

L2([a;b])
≤ ‖B‖2d

(
f̃(u), LS

{
e
θu
ε , θ ∈ Θ

})2

L2([a;b])

holds true, and its right-hand side equals 0, due to Corollary 2.2. Consequently, with
probability one the linear span of the functions {pε(· − θ); θ ∈ Θ} is dense in L2([a; b]).
The theorem is proved. �

3. Properties of the integral random operator

Now let us turn to the integral operator with kernel (1). Let pε be the same as before.

Lemma 3.1. For any f ∈ L2(R) and a stationary point process Θ with E|Θ ∩ [ 0; 1) | <
+∞ ∑

θ∈Θ

(∫
R
f(u)pε(u− θ)du

)2

< +∞ a.s.

Proof. Since Θ is a stationary point process, its intensity measure is Cλ, where λ is the
Lebesgue measure on R, and C = E|Θ ∩ [ 0; 1) |. Thus, by Campbell’s formula [1], for
every f ∈ L2(R)

E
∑
θ∈Θ

(∫
R
f(u)pε(u− θ)du

)2

≤ E
∑
θ∈Θ

∫
R

∫
R
|f(u)||f(v)|pε(u− θ)pε(v − θ)dudv =

=

∫
R

∫
R
|f(u)||f(v)|E

∑
θ∈Θ

pε(u− θ)pε(v − θ)dudv =

= C

∫
R

∫
R
|f(u)||f(v)|

∫
R
pε(u− t)pε(v − t)dtdudv =

= C

∫
R

∫
R
|f(u)||f(v)|p2ε(u− v)dudv = C

∫
R
h2(λ)e−ελ

2

dλ ≤ C
∫
R
|f(u)|2du,

where h is the Fourier transform of f ∈ L2(R). �

Remark 3.1. It follows from the proof of Lemma 3.1 that the following integral operator

Af(v) =
∑
θ∈Θ

∫
R
f(u)pε(u− θ)du · pε(v − θ)

is well-defined and is a strong random operator in Skorokhod sense [5].

The next lemma shows that A is not a bounded random operator in the most inter-
esting cases.
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Lemma 3.2. Let Θ be an ergodic stationary point process such that essup |Θ ∩ [0; 1]| =
+∞. Then A is not a bounded random operator.

Proof. It can be checked that under the assumption on the process Θ with probability
one there exists an increasing sequence of natural numbers {nk; k ≥ 1} such that

sup
k≥1
|Θ ∩ [nk;nk + 1) | = +∞.

Consider the following sequence of functions from L2(R)

fk = 1I[nk;nk+1) , k ≥ 1.

Then

‖Afk‖2 ≥
∑

θ∈Θ∩[nk;nk+1)

(∫ 1

0

pε(v)dv

)2

pε(1)2.

Hence, supk ‖Afk‖ = +∞, and the lemma is proved. �

For a fixed interval [a; b] denote by Qa,b the orthogonal projection of L2(R) onto
L2([a; b]), which we identify with the subspace of L2(R) of functions supported on [a; b].

Remark 3.2. For any a, b ∈ R the random operators AQa,b, Qa,bA are bounded.

Proof. One can check, by Hölder’s inequality, that for any f, g ∈ L2(R)

(AQa,bf, g) =
∑
θ∈Θ

∫
R
g(v)pε(v − θ)

∫ b

a

f(u)pε(u− θ)du ≤

≤ 2−
1
4 (b− a)

1
2 ‖g‖L2(R)‖f‖L2(R)

∑
θ∈Θ

max
u∈[a;b]

pε(u− θ).

By Campbell’s formula [1],

E
∑
θ∈Θ

max
u∈[a;b]

pε(u− θ) =

∫
R

max
u∈[a;b]

pε(u− r)dr < +∞.

Thus,
∑
θ∈Θ maxu∈[a;b] pε(u− θ) < +∞ a.s., which proves the statement. �

Lemma 3.3. For any a, b ∈ R with probability one the random operator AQa,b =
Qa,bAQa,b is nuclear.

Proof. To prove the statement, let us estimate the nuclear norm of Qa,bAQa,b. For any
θ ∈ Θ denote by eθ the function

eθ = Qa,bpε(· − θ).
Evidently, the operator eθ⊗ eθ is nuclear, and its nuclear norm equals ‖eθ‖2. Notice that

E
∑
θ∈Θ

‖eθ‖2 = E
∑
θ∈Θ

∫ b

a

pε(u− θ)2du =

= C

∫ b

a

∫
R
pε(u− v)2dvdu < +∞,

where, as before, C = E|Θ ∩ [0; 1]|. Its enough to note that

(8) Qa,bAQa,b =
∑
θ∈Θ

eθ ⊗ eθ.

The lemma is proved. �

Due to the previous statement, the image K of the unit ball in L2([a; b]) under the
operator AQa,b is a compact set with probability one. We obtain the following statement
about asymptotic behavior of the Kolmogorov width for the compact set K.
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Theorem 3.1. Let Θ be an ergodic stationary point process. Then with probability one
there exists C > 0 such that

dn(K) = O

(
e−

(Cn−b)2
ε ∨ e−

(Cn+a)2

ε

)
, n→∞.

Proof. Representation (8) allows us to estimate Kolmogorov widths of K. Let us denote
by Nx, x > 0, the number of elements of the set Θ ∩ [−x;x], and by dn the n-th
Kolmogorov width of K. It follows from (8) that

(9) dNx ≤
∑

θ∈Θ\[−x;x]

‖eθ‖2.

Due to the ergodic theorem, Nx ∼ 2Cx when x→ +∞.
To estimate the right-hand side of (9), suppose that x > max{−a, b}, and consider

the sum ∑
θ∈Θ,θ>x

‖eθ‖2 ≤
∑

θ∈Θ,θ>x

(b− a)pε(θ − b)2.

Denote by ξn = |Θ∩ [n;n+ 1) |. Then {ξn;n ≥ 1} is a stationary ergodic sequence. For
a natural x ∑

θ∈Θ,θ>x

pε(θ − b)2 ≤
+∞∑
k=x

pε(x− b)2ξk.

For any k ≥ 1 let Sk =
∑k
j=1 ξj . Since Sk ∼ Ck, k → ∞ a.s., then, by Abel transform,

one can check that
+∞∑
k=x

pε(k − b)2ξk = −pε(x− b)2Sx−1 +

+∞∑
k=x

Sk(pε(k − b)2 − pε(k + 1− b)2) ∼

∼ C
+∞∑
k=x

(pε(k − b)2 − pε(k + 1− b)2)k, x→ +∞.

Observe that
+∞∑
k=x

(pε(k − b)2 − pε(k + 1− b)2)k =
1

2πε

+∞∑
k=x

(1− e−
(2k+1−2b)

ε )e−
(k−b)2
ε k ∼ 1

4π
e−

(x−b)2
ε ,

and the statement is proved. �

For any interval [a; b], AQa,b is a bounded (nuclear) random operator. Despite this,
as [a; b] increases to R, AQa,b must converge to unbounded random operator A. Conse-
quently, one can expect that the operator norm ‖AQa,b‖ will increase to infinity as [a; b]
increases to R. Using the arguments from the proof of Lemma 3.2 one can prove the
following statement.

Theorem 3.2. Let Θ be a Poisson point process with intensity 1. Then

ln lnn

lnn
‖AQ−n,n‖ → +∞, n→∞ a.s.

Proof. Using the arguments from the proof of Lemma 3.2, one can show that

‖AQ−n,n‖ ≥ C max
1,n

ξk,

where the random variables {ξn;n ≥ 1} were introduced above. Now {ξn;n ≥ 1} are
independent poissonian random variables with intensity 1. Consequently,

P{ξ1 ≥ m} ∼
e−1

m!
, m→ +∞.
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For any R > 0 P{maxk=1,n ξk ≤ mnR} = (1− P{ξ1 > mnR})n. Thus, for mn = lnn
ln lnn

maxk=1,n ξk

mn
→ +∞, n→∞ a.s.,

and the theorem is proved. �
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