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AKIHIKO INOUE AND YUMIHARU NAKANO

REMARK ON OPTIMAL INVESTMENT IN A
MARKET WITH MEMORY

We consider a financial market model driven by a Gaussian semi-
martingale with stationary increments. This driving noise process
consists of n independent components and each component has mem-
ory described by two parameters. We extend results of the authors
on optimal investment in this market.

1. INTRODUCTION

In this paper, we extend results of Inoue and Nakano [12] on optimal
investment in a financial market model with memory. This market model
M consists of n risky and one riskless assets. The price of the riskless
asset is denoted by Sp(f) and that of the ith risky asset by S;(t). We put
S(t) = (S1(t),...,Su(t)), where A" denotes the transpose of a matrix A.
The dynamics of the R™-valued process S(t) are described by the stochastic
differential equation

dSi(t) = Si(t) [pi(t)dt + ¥, o (t)de(t)] L 120, S,0) = s,

while those of Sy(t) by the ordinary differential equation
dSo(t) =r(t)So(t)dt, t >0, Sp(0)=1,

where the coefficients r(t) > 0, p1;(t), and o;;(¢) are continuous deterministic
functions on [0,00) and the initial prices s; are positive constants. We
assume that the n x n volatility matrix o(¢) = (0y;(t))1<i j<n is nonsingular
for t > 0.
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We define the jth component Y;(¢) of the R"-valued driving noise process
Y(t) = (Yi(t),...,Y,(t)) of (1) by the autoregressive type equation

dvi(t) ' i dYi(s) dW;(t) _
Sup /_Oopje 545+ T e R, vi0) =0,

where W (t) = (Wi(t),...,W,(t)), t € R, is an R™-valued standard Brown-
ian motion defined on a complete probability space (£, F, P), the derivatives
dY;(t)/dt and dW;(t)/dt are in the random distribution sense, and p;’s and
g;’s are constants such that

0<gj<oo, —g;<pj<oo, j=1,...,n (2)

(see Anh-Inoue [1]). Equivalently, we may define Y;(¢) by the moving-
average type representation

t s
Y;(t) = W;(t) —/0 {/ pje” WTPIETI I (u) | ds, tE€R

[e.e]

(see [1], Examples 2.12 and 2.14). The components Y;(t), j = 1,...,n,
are Gaussian processes with stationary increments that are independent
of each other. Each Yj(¢) has short memory that is described by the two
parameters p; and g;. Notice that, in the special case p; = 0, Y;(¢) reduces
to the Brownian motion Wj(t).

The underlying information structure of the market model M is the

filtration (F;):>o defined by
Fri=0(0(Y(s):0<s<t)UN), t>0,

where N is the P-null subsets of F. With respect to this filtration, Y (¢) is a
semimartingale. In fact, we have the following two kinds of semimartingale
representations of Y (¢) (see Anh et al. [2], Example 5.3, and Inoue et al.
[13], Theorem 2.1):

o =50~ [ | [ o] 2o ot @

t s
Y;(t) = B,(t) —/ [/ lj(s,u)dBj(u)} ds, t>0, j7=1,....n, (4)
o LJo
where, for j = 1,...,n, (B}(t))i>0 is the innovation process, i.e., an R-

valued standard Brownian motion such that
o(Yi(s):0<s<t)=0(Bj(s):0<s<t), t>0,

and B;’s are independent of each other. The point of (3) and (4) is that

the deterministic kernels k;(t, s) and [;(t, s) are given explicitly by

(2g; + p;)e®® — pje”¥* <

(2g; + pj)Pes’ — pleut’ 7

Li(t,s) = e”Pita)=9)] () 0 < s <t (6)

k;i(t,s) = p;j(2q; + p;)
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with )
— Djd;
A e e ] R "

There already exist many references in which the standard driving noise,
that is, Brownian motion, is replaced by a different one, such as fractional
Brownian motion, so that the market model can capture memory effect. See,
e.g., Barndorff-Nielsen and Shephard [3], Hu et al. [11], Mishura [15] and
Heyde and Leonenko [10]. Among such models, the above model M driven
by Y (t) which is a Gaussian semimartingale with stationary increments is
possibly the simplest one. One advantage of M is that, assuming o0;;(t) =
0i;, real constants, we can easily estimate the characteristic parameters p;,
¢; and o;; from stock price data. See [12], Appendix C, for this parameter
estimation from real market data.

In the market M, an agent with initial endowment = € (0, 00) invests,
at each time ¢, m;(t) X™7(t) dollars in the ith risky asset fori = 1,...,n and
[1—>"  m(t)]X®™(t) dollars in the riskless asset, where X*7™(¢) denotes
the agent’s wealth at time ¢. The wealth process X*7(t) is governed by the
stochastic differential equation

AX*m(t " dSy(t n dsi(t) .
XT((t)) - [1 B Zi:l m(t)} 50(55)) + Zi:l i(t) () X*7(0) = =.

Here, the self-financing strategy m(¢) = (m(t), ..., m,(¢))" is chosen from the
admissible class

Ar = {n = (r(Ohcrer

7 is an R™-valued, progressively measurable
process satisfying fOT |7 (t)]|?dt < o a.s.

for the finite time horizon of length 7" € (0,00), where || - || denotes the
Euclidean norm of R™. If the time horizon is infinite, 7(¢) is chosen from

A= {(7(t))>0 : (7(t))o<t<r € Ar for every T' € (0,00)}.

Let a € (—00,1) \ {0} and ¢ € R. In [12], the following three optimal
investment problems for the model M are considered:

1
V(T,a) == sup —E[(X"7(T))], (8)
T€A «
1
J(a) :=suplimsup — log F [(X“™(T"))*], 9)
red T—oo O
1
I(c) := suplimsup — log P [X*™(T) > e]. (10)
meA T—oo T

Problem (8) is the classical optimal investment problem that dates back to
Merton (cf. Karatzas and Shreve [14]). Hu et al. [11] studied this problem for
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a Black—Scholes type model driven by fractional Brownian motion. Problem
(9) is a kind of long term optimal investment problem which is studied by
Bielecki and Pliska [4], and also by other authors under various settings,
including Fleming and Sheu [5,6], Nagai and Peng [16], Pham [17,18], Hata
and lida [7], and Hata and Sekine [8,9]. Problem (10) is another type of
long term optimal investment problem, the aim of which is to maximize the
large deviation probability that the wealth grows at a higher rate than the
given benchmark c. Pham [17,18] studied this problem and established a
duality relation between Problems (9) and (10). Subsequently, this problem
is studied by Hata and Iida [7] and Hata and Sekine [8,9] under different
settings.

In [12], Problems (8)—(10) are studied for the market model M which
has memory. There, the following condition, rather than (2), is assumed in
solving (8)—(10):

0<gj<oo, 0<p;<oo, j=1,...,n. (11)

Thus, in [12], p; > 0 rather than p; > —¢; for j = 1,...,n. In this paper,
we focus on Problems (8) and (9), and extends the results of [12] so that
p;’s may take negative values. The key to this extension is to show the
existence of solution for a relevant Riccati type equation.

In Sections 2 and 3, we review the results of [12] on Problems (8) and
(9), respectively, and, in Section 4, we extend these results.

2. OPTIMAL INVESTMENT OVER A FINITE HORIZON

In this section, we review the result of [12] on the finite horizon optimiza-
tion problem (8) for the market model M. We assume o € (—o0, 1) \ {0}
and (11).

Let Y(t) = (Yi(t),...,Y,(t)) and B(t) = (Bi(t), ..., Bu(t))" be the driv-
ing noise and innovation processes, respectively, described in the previous
section. We define an R™-valued deterministic function A(¢) = (A(), ...,

Aa(1))’ by
A(t) = o () [u(t) — r(1], t>0, (12)

where 1 := (1,...,1)" € R". For k;(t,s)’s in (5), we put
k(t,s) := diag(ky(t,s), ..., k.(t,s)), 0<s<t.
Let &(t) = (&1(t), ..., &u(t))" be the R™valued process fot k(t,s)dY (s), i.e.,

t
t) = / ki, $)dYi(s), >0, j=1,....n. (13)
0
Let (8 be the conjugate exponent of «, i.e.,

(1/a)+(1/8) = 1.
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Notice that 0 < 5 < 1 (resp. —c0 < < 0) if —o0 < a < 0 (resp.
0<a<l).

We put I(t) := diag(ly1(t),...,l,(t)), p = diag(p1,...,pn), and q :=
diag(qq, - .., ¢,) with [;(¢)’s as in (7). We also put

p(t) = (pl(t)> s ’pN(t)),a b(t) = diag(bl(t)a SKI) bN(t))
with
pi(t) == =BLi(t)\(1), t>0, j7=1,...,n, (14)
bi(t) == —(p;+q;)+BL1), t=0, j=1....n. (15

We consider the following one-dimensional backward Riccati equations: for
j=1,....n

Ry(t) — B(t)R2(t) + 2b;()R;(t) + B(1 — B) =0, 0<t<T,

RAT) =0. (16)

We have the following result on the existence of solution to (16).
Lemma 1 ([12], Lemma 2.1). Let j € {1,...,n}.
1. If pj =0, then (16) has a unique solution R;(t) = R;(t;T).

2. If p; > 0 and —oo < a < 0, then (16) has a unique nonnegative
solution R;(t) = R;(t;T).

3. If pj >0 and 0 < a < 1, then (16) has a unique solution R;(t)
R;(t;T) such that R;(t) > b;(t)/1(t) fort € [0,T].

In what follows, we write R;(t) = R;(t;T") for the unique solution to
(16) in the sense of Lemma 1, and we put R(t) := diag(Ri(t), ..., R.(t)).

For j = 1,...,n, let v;(t) = v;(t;T) be the solution to the following
one-dimensional linear equation:

(1) + [b; (1) = B(O)R;(t; T)]v; () + B(1 = B)A;(t) — R;(t; T)p;(t) = 0,
(17)
We put v(t) = v(t;T) = (v (&;T), ..., v.(t;T))".
Forj=1,...,nand (t,T) € A, write

9i(t:T) = v (TG () + 2p;(t)o; (6 T) = LR (6 T) — B(1 = B)AS(1),

where
A:={(tT):0<T <00, 0<t<T}.

Recall that we have assumed a € (—o0,1) \ {0} and (11). Here is the
solution to Problem (8) under the condition (11).
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Theorem 2 ([12], Theorem 2.3). For T € (0,00), the strategy (7r(t))o<i<T
€ Ar defined by

ar(t) = () O [(1 = BN — {1 = B+ UBRET)IED) + U(E)o(::T)] (18)

is the unique optimal strategy for Problem (8). The value function V(T') =
V(T,«) in (8) is given by

V(T) ! [2S(T)]* exp {(1 —a) Z; /0 ' g;(t; T)dt} :

T 9

3. OPTIMAL INVESTMENT OVER AN INFINITE HORIZON

In this section, we review the result of [12] on the infinite horizon opti-
mization problem (9) for the financial market model M. Throughout this
section, we assume (11) and the following two conditions:

T
71520%/0 r(t)dt =7 with 7€ R, (19)
dim A(t) = A with A= (),...,\,) € R™. (20)

Here recall A(t) = (A\(t),..., A\ (1)) from (12).
Let o € (—o00,1) \ {0} and B be its conjugate exponent. Let j €
{1,...,n}. For b;(t) in (15), we have lim, ., b;(t) = b;, where

by == —(1—B)p; — 4.
Notice that l_)j < 0. We consider the equation
pia® — 2b;z — B(1 — ) = 0. (21)

When p; = 0, we write R; for the unique solution 8(1 — 3)/(2g;) of this
linear equation. If p; > 0, then

B2+ BB = (1-B)(p; + 4;)° — 2] + a2 = ¢ >0,

so that we may write R; for the larger solution to the quadratic equation
(21). Let j € {1,...,n}. For p;(t) in (14), we have lim;_,, p;(t) = p;, where

ﬁj = —6])35\3

Define v; by
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For j=1,...,nand —oco < a <1, a # 0, we put

(pj + 4;)° N
(1= a)(pj +;)* + ap;(p; + 2¢;)]

Fi(a) =

and

Gj(a) == (pj + ¢j) — g

—(1— )2 [(1 = a)(p; +q5)* + ap;(p; +24;)]"° .

Recall £(t) from (13). Taking into account (18), we consider 7 =
(7(t))e>0 € A defined by

w(t) == (o)1) [1 = B)A(t) — (L = B+ pR)E(t) +pv] ., t>0,

where R := diag(Ry,...,R,), ¥ := (01,...,9,), and p := diag(py, ..., Dn).
We define
e r=max(pu, . -+, Qpy) (22)

with

(23)

{ —00 it —oo<p; <2¢,
Oéj* =

8¢ .
—3 - pj_qéqj if 2¢; <p; <oo.

Notice that a, € [—00, —3).
Recall that we have assumed (11), (19) and (20). Here is the solution
to Problem (9) under the condition (11).

Theorem 3 ([12], Theorem 3.4). Let o, < oo < 1, a # 0. Then 7 is an
optimal strategy for Problem (9) with limit rather than limsup in (9). The
optimal growth rate J(a) in (9) is given by

J(a) =7+ % ZFj(a) + %ZG]-(@).

4. EXTENSIONS

In this section, we extend Theorems 2 and 3 so that p;’s may take
negative values. The key is to extend Lemma 1 properly. We assume

a € (—oo0,1)\ {0} and (2).
We put, for j =1,...,n,

ay;(t) = 1(t)?,

az;(t) = BlLi(t) — (pj + q5),
as = ﬁ(l — ﬂ)
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Then the Riccati equation (16) becomes

R;(t) — ay;(t)R3(t) + 2a9;(t)R;(t) + a5 =0, 0<t<T,
R;(T) = 0.
Note that [;(¢) is increasing and satisfies

lj (O) _ pj(pj + 2qj>

< ;(t) < pj, t>0.

Proposition 4. Let j € {1,...,n}. We assume —q; < p; <0 and
2
Pitg )
O<a< | —"F—F———) . 24
a (pj+4j—lj(0) 24
1. It holds that ax;(t) <0 fort > 0.
2. It holds that as;(t)? + ayj(t)as > 0 for t > 0.
Proof. We have
az;(t) = Bli(t) — (p; + 45) < BL(0) — (pj + ¢5),
whence ay;(t) < 01if 5> (p; + ¢;)/1;(0) or

(i +4)/5O)  _ pitg
“ i+ a) /O] =1 py+ g5 — 1;(0)°

However, 0 < (p; + ¢;)/[p; + ¢; — [;(0)] < 1, whence

p; + ¢ < P+ q; )2
> .
pj +q; — 1;(0) pj +q; — 1;(0)
Thus the first assertion follows.

We have
a9 (1)* + ay;(t)as

Bly(t)* — 2(pj + 4); (0B + (p; + qy)
J( ) - 2(2% "‘ J)l (0)8 + (pj + Cb)
{(pj +4;) = (00} = (pj + @)°] + (pj + 4)*,

whence as;(t)* + aq;(t)as > 0 if

Y ”

J
3l
Al

(p; +q5)?
(pj +¢5)* = [(p; + ;) — [;(0)]*

However, this is equivalent to a < [(p; + ¢;)/{p; + ¢; — 1;(0)}]*>. Thus the
second assertion follows.

Lemma 5. Let j € {1,...,n}.

Gz
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1. We assume —q; < p; <0 and —oo < o < 0. Then (16) has a unique
nonnegative solution R;(t) = R;(t;T).

2. We assume —q; < p; <0 and (24). Then (16) has a unique solution
R;(t) = R;(t; T) such that R;(t) > R;(t) fort € [0,T], where

CLQJ + \/CLQJ t +Cl1j t) as

) = ay;(t)

Proof. The first assertion follows in the same way as in the proof of [12],
Lemma 2.1 (ii). Thus we prove the second assertion.

Notice that Rj(t) is the larger solution to the quadratic equation
ayj(t)x? — 2a9;(t)x — a3 = 0. Thus

ayj ()R (t)* — 2a9;(t) R} (t) — a3 = 0. (25)

Since ay;(t) > 0, agj(t) < 0 and az < 0, we see that R}(t) < 0. The equation
for V(t) := R;(t) — R;(t) becomes

V(1) = ar;()V (£)? + 2[as;(t) — ar; () ROV (1) + Ri(t) = 0. (26)
By differenciating (25), we get

ay ()R (1) + 2a1;(8) RS (£) R (1) — 2a0; R (t) — 2a0;(t) 5 (t) = 0,

whence
e 200 (1) R5(1) — Gy (8) R (1)?
= 2\/ag;(t)? + ay;(t)as
Now
20, (t) B3 () — an; Ry ()° = =250 R; (1) {1;(t) R} () — B8}
Since

ag;j (1) + a1; (t)as = Bl;(1)* — 2(p; + ¢)l; (0B + (p; + ¢;)* < (p; + ¢3)%,

we see that

l](t)R;k(t) — ﬁ = l](t) {—(pj + Qj) + \/agj(t)Q + alj(t)ag} > 0.

Thus R;“ (t) > 0. This and a4;(¢) > 0 imply that (26) has a unique nonneg-
ative solution. The second assertion follows from this.

We define

o :==min(aj,...,a))



OPTIMAL INVESTMENT IN A MARKET WITH MEMORY 75

with

2

pit+a; :

o = (W) it =g <p; <0,
1 it 0<p; <oo.

Notice that o* € (0,1]. Recall a, from (22).

Taking the solution R;(t) = R;(t;T) of (16) in the sense of Lemma 1 or
5 and running through the same arguments as those in [12], Sections 2 and
3, we obtain the following extensions to Theorems 2 and 3.

Theorem 6. We assume (2) and —oco0 < a < o, o # 0. Then the same
conclusions as those of Theorem 2 hold.

Theorem 7. We assume (2), (19), (20) and o, < a < a*, a # 0. Then
the same conclusions as those of Theorem 3 hold.
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