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NATALIYA SEMENOVS’KA

INTERPOLATION OF HOMOGENEOUS AND
ISOTROPIC RANDOM FIELD IN THE CENTER
OF THE SPHERE BY UNIFORM DISTRIBUTED

OBSERVATIONS

We consider interpolation of homogeneous and isotropic random field
in the center of the sphere by uniform distributed observations on the
sphere. The asymptotic behavior of the mean-square interpolation
error is investigated. The degree of convergence to zero of the mean-
square interpolation error is obtained. Efficient volume of the set of
observations is given.

1. Introduction

In the paper [1] the problem of interpolation of homogeneous and isotropic
random field in in the center of the circle by observations on the circle
was considered. In the paper we consider a particle case of the problem
of interpolation of homogeneous and isotropic random field in an arbitrary
point inside of the sphere by observations on the sphere which had consid-
ered in paper [2]. That is the problem of interpolation of homogeneous and
isotropic random field in the center of the sphere by uniform distributed ob-
servations on the sphere. Namely, we investigate the order of convergence
of the interpolation error to zero. We obtain also efficient volume of the set
of observations.

So, we will use the results and notions of the aforementioned papers to
investigate our problem.

Give some initial notions.
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2. The interpolation problem

At first, give the following notations.
Let ξ(x), x ∈ Rn, be a mean-square continuous, homogeneous and wide-

isotropic centered random field at the Euclidian space Rn, that is, Eξ(x) =
0, E|ξ(x)|2 < ∞ and the correlation function ϕ(|x − y|) = Eξ(x)ξ(y) de-
pends only on the distance |x − y| between the points x and y.

Denote by (r, ϕ) = (ρ, ϕ1, . . . , ϕn−1) the spherical coordinates of the
point x and let Sl

m(ϕ) be orthonormalized spherical harmonics of order m,

h(m, n) = (2m + n − 2) (m+n−3)!
(n−2)!m!

is their quantity.

The following spectral representation takes place [3].

ξ(x) = cn

∑
m≥0

h(m,n)∑
l=1

Sl
m(ϕ)ζ l

m(r),

ζ l
m(r) =

∞∫
0

J
m+ n−2

2
(λr)

(λr)
n−2

2
Z l

m(dλ),

(1)

where c2
n = 2n−1Γ

(
n
2

)
π

n
2 , and Z l

m(·) is a sequence of uncorrelated random
measures on (0, +∞) with spectral measure Φ:

EZ l
m(S) = 0

EZ l
m(S1)Z

q
p(S2) = δp

mδq
l Φ(S1∩S2)

(2)

for all S, S1, S2 ∈ B(0, +∞) and for all m, l, p, q ≥ 0.

bm(r, ρ) =

∞∫
0

Jm+ n−2
2

(λr)

(λr)
n−2

2

·
Jm+ n−2

2
(λρ)

(λρ)
n−2

2

dΦ(λ), (3)

where Jm is the Bessel function of order m, and bm(r) = bm(r, r).
From (2)it follows that ζ l

m(r) are uncorrelated random variables for dif-
ferent m and l:

Eζ l
m(r)ζq

p(r) = δp
mδq

l bm(r). (4)

Consider the problem of interpolation of field ξ(x) in an arbitrary point
y inside of the sphere Sn of radius r by observations on the sphere. This

problem reduces to that of finding of the projection ξ̂(y) of element ξ(y) at
the linear space Hξ(r) formed by the mean-square closure of the linear span
of random variables of the form ξ(x) : |x| = r :

ξ̂(y) ∈ Hξ(r) = Cl
{∑

αkξ(xk), |xk| = r
}

.

Such interpolation formula by Theorem 3 ([3], IV, § 1) has the form

ξ̂(y) = c(y)

∫
Sn

ξ(x)dμn, (5)
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where

c(y) =
1

ωn
· b0(r, ρ)

b0(r)
, (6)

μn is Lebesgue measure on the unit sphere in Euclidian space Rn and ωn is
that sphere surface square.

The corresponding interpolation error σ2 = E(ξ(y)− ξ̂(y))2 equals

σ2 = ϕ(0) − c2
n

ωn

· b2
0(r, ρ)

b0(r)
. (7)

When using the interpolation formula (5) in practice, the integral
∫
Sn

ξ(x)dμn

is replaced by the corresponding integral sum. Hence, we consider, instead
of the problem of interpolation based on the space

Hξ(r) = Cl
{∑

αkξ(xk), |xk| = r
}

,

the problem of interpolation of the value ξ(y) from observations on the space

HX(r) =
{∑

αkξ(xk), xk ∈ X
}

, (8)

where X = {x1, . . . , xN} is some finite subset of the sphere Sn formed by
observation points.

So, the integral (5) replaced by finite linear combination (8) of values of
the field ξ(x) in points of a certain set X. Therefore, we obtain the problem
of accuracy of that replacing, which equivalent to that one of accuracy of
the interpolation formula (5) approximation.

Fix a set X = {x1, . . . , xN}. Since HX ⊂ Hξ, the properties of mean-

square projection imply that for any estimate ξ̂X(y) ∈ HX the identity

σ2
X ≡ E(ξ(y)− ξ̂X(y))2 = σ2+ σ̂2

X ≡ E(ξ(y)− ξ̂(y))2+E(ξ̂(y)− ξ̂X(y))2 (9)

holds.
Definition 1. According to (9), a set X ⊂ Sn will be called efficient if

the error of approximation of the integral (5) by the integral sum does not

exceed the error of the corresponding interpolation, that is, σ̂2
X ≤ σ2. In

this case the total variance of the approximate solution of the interpolation
problem does not exceed the value σ2

X ≤ 2σ2, where σ2 is evaluated in (7).
The best mean-square interpolation of the value ξ(y) from values from

X is of the form

ξ̂(y) =

N∑
k=1

αkξ(xk), (10)

where αk, k = 1, . . . , N are weight coefficients.
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Denote by

FN (ϕ) =
∑

k:ϕk≤ϕ

αk, ϕ1 ∈ [0, 2π], ϕi ∈ [0, π], i = 2, n − 1,

the cumulative ”distribution function” of weights {α1, . . . , αN} of points
{x1, . . . , xN} on the sphere. Here the inequality ϕk ≤ ϕ means the system

of step-by-step inequalities ϕ
(i)
k ≤ ϕi, i = 1, n − 1.

In the paper [2] we get the following result.
Corollary. For any sequence of series of sets XN = {x1, . . . , xN}, where

xk = (r, ϕk), 0 < ϕ
(i)
1 < ϕ

(i)
2 < · · · < ϕ

(i)
N = 2π, 0 < ϕ

(i)
1 < ϕ

(i)
2 < · · · < ϕ

(i)
N =

π, i = 2, n − 1, under condition

∑
m≥0

h(m,n)∑
l=1

∣∣∣clm(y)
∣∣∣2 < +∞, (11)

the mean-square approximating error σ̂2
X tends to zero as N → ∞, provided

that weights

αk = C(y, xk)
n−1∏
i=1

(ϕ
(i)
k − ϕ

(i)
k−1),

and max |
n−1∏
i=1

(ϕ
(i)
k − ϕ

(i)
k−1)| → 0 as N → ∞.

Here

C(y, x) =
1

ωn(n − 2)

∑
m≥0

bm(r, ρ)

bm(r)
(2m + n − 2)C

n−2
2

m (cos θ), (12)

θ is angle between vectors x and y and Cν
m(x), m ≥ 0, are Gegenbouer

polynomials which can be defined as coefficients in representation of function

(1 − 2tx + t2)−ν =

∞∑
m=0

Cν
m(x)tm, (13)

that is generatrices for those polynomials.

3. Asymptotic behavior of the error for the uniform

distribution

Let us consider the case where the points of the set XN = {x1, . . . , xN}
are uniformly distributed on the sphere Sn, that is, ϕ

(1)
k = 2π(k1−1)

M
, ϕ

(i)
k =

π(ki−1)
M

, i = 2, n, ki = 1, M . So, we have N = Mn−1 points. From
Corollary 1 follows, that choice of interpolation weights of the form αk =
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ϕ(r)l(ϕk)
c2nb0(r)

n−1∏
i=1

(ϕ
(i)
k −ϕ

(i)
k−1), where l(ϕ) = (sin ϕ2)

n−2(sin ϕ3)
n−3 . . . sin ϕn−1 and

ϕ(r) = 2
n−2

2 Γ(n/2)
∞∫
0

Jn−2
2

(λr)(λr)
2−n
2 dΦ(λ) is correlation function, mini-

mizes (moreover, reduces to zero) limit error σ̂2∞. Let’s investigate the

degree of convergence of σ̂2
X to zero in this case.

Since the random variables ζ l
m are uncorrelated in accordance with (4)

and interpolation formula for ξ̂(y) has the form (10), taking into account
the spectral representation (1), we have

σ̂2
X = E(ξ̂(y) − ξ̂X(y))2 =

= c2
n

∑
m≥0

h(m,n)∑
l=1

∣∣∣∣ N∑
k=1

αkS
l
m(ϕk) − bm(r,ρ)

bm(r)
Sl

m(ψ)

∣∣∣∣2 E|ζ l
m(r)|2 (14)

Evaluate equality in (14), taking into account the fact that the field is
extrapolating in the center of the sphere (it means that ρ = 0 and bm(r, ρ) =
δ0
m

ωn

c2n
ϕ(r)).

σ̂2
X = E(ξ̂(y)− ξ̂X(y))2 = c2

n

∑
m≥0

h(m,n)∑
l=1

∣∣∣∣ N∑
k=1

αkS
l
m(ϕk) − bm(r,ρ)

bm(r)
Sl

m(ψ)

∣∣∣∣2 bm(r)

= c2n
ωn

(
N∑

k=1

αk − ωnϕ(r)
c2nb0(r)

)2b0(r)+

+ c2n
ωn

2
(n−2)

N∑
k,j=1

αkαj

∞∫
0

∑
m≥1

(m + n−2
2

)
J2

m+ n−2
2

(λ r)

(λ r)n−2 C
n−2

2
m (cos θkj)dΦ(λ) =

= c2n
ωn

(S(α) − ωnϕ(r)
c2nb0(r)

)2b0(r) − c2n
ωn

b0(r)S
2(α)+

+ cn√
ωn

N∑
k,j=1

αkαj

∞∫
0

J n−2
2

(λRkj)

(λRkj)
n−2

2
dΦ(λ),

(15)

where S(α) =
N∑

k=1

αk, Rkj = 2r sin
θkj

2
, and θkj are angles between vectors

xk and xj .

Substitute values of interpolation weights αk in last equality.

σ̂2
X = c2n

ωn
(ωnϕ(r)

c2nb0(r)
− ωnϕ(r)

c2nb0(r)
)2b0(r) − c2n

ωn
b0(r)

(
ωnϕ(r)
c2nb0(r)

)2

+

+ cn√
ωn

N∑
k,j=1

(
2πn−1ϕ(r)
c2nNb0(r)

)2

l(ϕk)l(ϕj)
∞∫
0

J n−2
2

(2λr sin
θkj
2

)

(2λr sin
θkj
2

)
n−2

2
dΦ(λ) =

= −ωnϕ2(r)
c2nb0(r)

+ cn√
ωn

N∑
k,j=1

(
ϕ(r)2πn−1

b0(r)c2nN

)2

l(ϕk)l(ϕj)
∞∫
0

J n−2
2

(2λr sin
θkj
2

)

(2λr sin
θkj
2

)
n−2

2
dΦ(λ).

Denote by F (ϕ) = ϕ(r)
b0(r)c2n

∫ ϕ

0
l(u)du distribution function of weights {α1, . . . ,
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αN}. If we pass in (15) to the limit as N → ∞ we obtain

ωnϕ2(r)
c2nb0(r)

= cn√
ωn

∞∫
0

(∫
Πn

∫
Πn

Jn−2
2

(2λr
√

2(1−cos θ))

(2λr
√

2(1−cos θ))
n−2

2
dF(u)dF(v)

)
dΦ(λ) =

= cn√
ωn

(
ϕ(r)

b0(r)c2n

)2 ∞∫
0

(∫
Πn

∫
Πn

l(u)l(v)
Jn−2

2
(2λr

√
2(1−cos θ))

(2λr
√

2(1−cos θ))
n−2
2

dudv

)
dΦ(λ),

where θ is the angle between u and v.
Recall that l(u) = (sin u2)

n−2(sin u3)
n−3 . . . sin un−1, and

cos (̂u, v) = cos u2 cos v2 + sin u2 sin v2 cos u3 cos v3+
+ sin u2 sin v2 sin u3 sin v3 cos u4 cos v4 + . . .+

+(cosu1 cos v1 + sin u1 sin v1)
n−1∏
i=2

sin ui sin vi =

= cos u2 cos v2 + sin u2 sin v2 cos u3 cos v3+
+ sin u2 sin v2 sin u3 sin v3 cos u4 cos v4 + . . .+

+ cos(u1 − v1)
n−1∏
i=2

sin ui sin vi

depends on cos(u1 − v1) and variables ǔ = (u2, . . . , un−1) and v̌ =
(v2, . . . , vn−1).

Denote H(cos(u1 − v1), ǔ, v̌) = cn√
ωn

∞∫
0

l(u)l(v)
J n−2

2
(2λr

√
2(1−cos θ))

(2λr
√

2(1−cos θ))
n−2

2
dΦ(λ) =

l(u)l(v)ϕ(2r
√

2(1 − cos θ)), ǩ = (k2, . . . , kn−1), Πn−1 = [0, π]n−2, and write

σ̂2
X =

(
ϕ(r)

b0(r)c2n

)2
(

( πn−2

Mn−2 )
2

M∑
ǩ,ǰ=1

(2π)2

M2

M∑
k1,j1=1

H(cos(ϕ
(1)
k − ϕ

(1)
j ), ϕ̌k, ϕ̌j)−

− ∫
Πn−1

∫
Πn−1

2π∫
0

2π∫
0

H(cos(u1 − v1), ǔ, v̌)du1dv1dǔdv̌

)
.

(16)
Taking into account evenness and summeriness of the function H(cos(u1 −
v1), ǔ, v̌) write

(2π)2

M2

M∑
k1,j1=1

H(cos(ϕ(1)
k − ϕ

(1)
j ), ϕ̌k, ϕ̌j) = (2π)2

M2

M∑
k1,j1=1

H(cos(k − j)2π
M , ϕ̌k, ϕ̌j) =

= (2π)2

M

∑
|s|<M

(1 − |s|
M )H(cos s2π

M , ϕ̌k, ϕ̌j) = 2 (2π)2

M

M−1∑
s=0

(1 − s
M )H(cos s2π

M , ϕ̌k, ϕ̌j),

and also

2π∫
0

2π∫
0

H(cos(u1 − v1), ǔ, v̌)du1dv1 = 2(2π)2
1∫
0

(1 − x)H(cos 2πx, ǔ, v̌)dx.
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Denote G(x, ǔ, v̌) = (1 − x)H(cos 2πx, ǔ, v̌), Πǩ =
n−1∏
i=2

[ (ki−1)π
M

, kiπ
M

], Π1/M =

[ π
M

, π
M

]n−2.
Evaluate the equality in (16).

σ̂2
X = 2

(
2πϕ(r)
b0(r)c2n

)2
(

( πn−2

Mn−2 )
2

M∑
ǩ,ǰ=1

1
M

M−1∑
s=0

G( s
M

, ϕ̌k, ϕ̌j)−

− ∫
Πn−1

∫
Πn−1

1∫
0

G(x, ǔ, v̌)dxdǔdv̌

)
=

= −2
(

2πϕ(r)
b0(r)c2n

)2 M∑
ǩ,ǰ=1

M−1∑
s=0

∫
Πǩ

∫
Πǰ

s+1
M∫
s
M

(
G(x, ǔ, v̌) − G( s

M
, ϕ̌k, ϕ̌j)

)
dxdǔdv̌ =

= −2
(

2πϕ(r)
b0(r)c2n

)2 M−1∑
ǩ,ǰ=0

M−1∑
s=0

∫
Π1/M

∫
Π1/M

1
M∫
0

(
G(x + s

M
, ǔ + ǩφ, v̌ + ǰφ)−

−G( s
M

, ǩφ, ǰφ)
)
dxdǔdv̌,

where φ = (π/M, . . . , π/M︸ ︷︷ ︸
n−2

).

σ̂2
X = −2

(
2πϕ(r)
b0(r)c2n

)2 M−1∑
ǩ,ǰ=0

M−1∑
s=0

∫
Π 1

M

∫
Π 1

M

1
M∫
0

(
G′( s

M , ǩφ, ǰφ)(x, ǔ, v̌) + o1( 1
M)
)
dxdǔdv̌.

Since∫
Π1/M

∫
Π1/M

1
M∫
0

G′
ui

(( s
M

, ǩφ, ǰφ)uidxdǔdv̌ = G′
ui
( s

M
, ǩφ, ǰφ) π

2M2

(
πn−2

Mn−2

)2

, i ≥ 2,

(similarly for
∫

Π1/M

∫
Π1/M

G′
vi
(kφ; jφ)vidudv),

∫
Π1/M

∫
Π1/M

1
M∫
0

G′
x((

s
M

, ǩφ, ǰφ)uidxdǔdv̌ = G′
x(

s
M

, ǩφ, ǰφ) 1
2M2

(
πn−2

Mn−2

)2

,

we have

σ̂2
X = − 1

M

(
2πϕ(r)
b0(r)c2n

)2 M−1∑
ǩ,ǰ=0

M−1∑
s=0

(
π
M

(
πn−2

Mn−2

)2 n−1∑
i=2

(G′
ui

( s
M

, ǩφ, ǰφ)+

+G′
vi

( s
M

, ǩφ, ǰφ)) + 1
M

(
πn−2

Mn−2

)2

G′
x(

s
M

, ǩφ, ǰφ)

)
+ o2(

1
M

) =

= − 1
M

(
2πϕ(r)
b0(r)c2n

)2 ∫
Πn−1

∫
Πn−1

1∫
0

{
π

n−1∑
i=2

(G′
ui

(x, ǔ, v̌) + G′
vi
(x, ǔ, v̌))+

+G′
x(x, ǔ, v̌)} dxdǔdv̌ + o2(

1
M

).

Note that for all i ≥ 2 integral
π∫
0

G′
ui

(x, ǔ, v̌)dui = G(x, ǔ, v̌) |π0= 0, since

sin ui is a component of the function G(x, ǔ, v̌).
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(Similarly,
π∫
0

G′
vi
(x, ǔ, v̌)dvi = 0.)

1∫
0

G′
x(x, ǔ, v̌)dui = G(1, ǔ, v̌) − G(0, ǔ, v̌) = −H(1, ǔ, v̌)

So,

σ̂2
X =

1

M

(
2πϕ(r)

b0(r)c2
n

)2 ∫
Πn−1

∫
Πn−1

H(1, ǔ, v̌)dǔdv̌ + o(
1

M
). (17)

Taking into account obtained result we formulate the following theorem.
Theorem 1. Let the sphere Sn be uniformly divided by the set XN =

{x1, . . . , xN}, N = Mn−1, of points with spherical angles ϕ
(1)
k = 2π(k1 −

1)/M, ϕ
(i)
k = π(ki−1)/M, i = 2, n − 1. Let the coefficients αk = ϕ(r)l(ϕk)

b0(r)c2n

2πn−1

N
,

where l(ϕ) = (sin ϕ2)
n−2(sin ϕ3)

n−3 . . . sin ϕn−1. Then the asymptotic mean-
square error of the estimate

ξ̂X(0) =
ϕ(r)

b0(r)c2
n

· 2πn−1

N

N∑
k=0

l(ϕk)ξ(xk)

is

σ̂2
X =

1
n−1
√

N

(
ϕ(r)

b0(r)c2
n

)2

V ar

∫
Sn

ξ(0, ǔ)dμn(u) + o(
1

n−1
√

N
). (18)

Proof. Taking into account the value H(cos(u1−v1), ǔ, v̌), from (17) obtain

σ̂2
X = 1

M

(
2πϕ(r)
b0(r)c2n

)2 ∫
Πn−1

∫
Πn−1

l(u)l(v)ϕ(2r

√
2(1 − cos(̂̌u, v̌)))dǔdv̌ + o( 1

M
) =

= 1
M

(
ϕ(r)

b0(r)c2n

)2 ∫
Πn

∫
Πn

l(u)l(v)ϕ(|u − v|) |u1=v1=0 dudv + o( 1
M

) =

= 1
M

(
ϕ(r)

b0(r)c2n

)2 ∫
Sn

∫
Sn

ϕ(|u − v|) |u1=v1=0 dμn(u)dμn(v) + o( 1
M

) =

= 1
M

(
ϕ(r)

b0(r)c2n

)2

V ar
∫
Sn

ξ(0, ǔ)dμn(u) + o( 1
M

).

Corollary 1. The uniformly distributed set XN = {x1, . . . , xN}, N =
Mn−1, of observations on the sphere Sn with interpolation weights αk =
ϕ(r)l(ϕk)
b0(r)c2n

2πn−1

N
is efficient starting from the volume

N =

⎧⎪⎨⎪⎩
(

ϕ(r)

b0(r)c2
n

)2

·
V ar

∫
Sn

ξ(0, ǔ)dμn(u)

ϕ(0) − ϕ(r)
b0(r)

⎫⎪⎬⎪⎭
n−1

.
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Proof. The proof follows directly from the Definition 1, by which σ̂2
X � σ2,

and from formulas (18) and (7).
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