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NATALIYA SEMENOVS'KA

INTERPOLATION OF HOMOGENEOUS AND
ISOTROPIC RANDOM FIELD IN THE CENTER
OF THE SPHERE BY UNIFORM DISTRIBUTED

OBSERVATIONS

We consider interpolation of homogeneous and isotropic random field
in the center of the sphere by uniform distributed observations on the
sphere. The asymptotic behavior of the mean-square interpolation
error is investigated. The degree of convergence to zero of the mean-
square interpolation error is obtained. Efficient volume of the set of
observations is given.

1. INTRODUCTION

In the paper [1] the problem of interpolation of homogeneous and isotropic
random field in in the center of the circle by observations on the circle
was considered. In the paper we consider a particle case of the problem
of interpolation of homogeneous and isotropic random field in an arbitrary
point inside of the sphere by observations on the sphere which had consid-
ered in paper [2]. That is the problem of interpolation of homogeneous and
isotropic random field in the center of the sphere by uniform distributed ob-
servations on the sphere. Namely, we investigate the order of convergence
of the interpolation error to zero. We obtain also efficient volume of the set
of observations.

So, we will use the results and notions of the aforementioned papers to
investigate our problem.

Give some initial notions.
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2. THE INTERPOLATION PROBLEM

At first, give the following notations.

Let {(z),z € R™, be a mean-square continuous, homogeneous and wide-
isotropic centered random field at the Euclidian space R™, that is, F{(z) =
0, E|é(x)]? < oo and the correlation function ¢(|z — y|) = E€(x)E(y) de-
pends only on the distance |z — y| between the points = and .

Denote by (r,%) = (p,%1,...,9n_1) the spherical coordinates of the
point x and let S’ (%) be orthonormalized spherical harmonics of order m,
h(m,n) = (2m 4 n — 2)203 g their quantity.

(n—2 )!m!
The following spectral representation takes place [3].

h(m,n)
§@)=ca 2 3 Su(@)Cn(r),
LT ) (1)
Ghir) = [ 2, ),

where ¢2 = 2"7T' (2) 7%, and Z!, (") is a sequence of uncorrelated random
measures on (0, +00) with spectral measure ®:

EZL(S) =0 )
EZ. (S1)Z3(S5) = 67,69D(51NS,)

for all S, 51,55 € B(0,4+00) and for all m,1,p,q > 0.
[myzgz ) T a2 (M)

bm(T, :0) = /J 277,72 ' 2n—2 dq)()‘)v (3)
/o0 F T 0T

where J,,, is the Bessel function of order m, and by, (r) = b,,,(r, 7).
From (2)it follows that ¢! (r) are uncorrelated random variables for dif-
ferent m and I

EG,(r)G(r) = 65,6/ bn(r). (4)
Consider the problem of interpolation of field {(z) in an arbitrary point
y inside of the sphere S, of radius r by observations on the sphere. This

problem reduces to that of finding of the projection £(y) of element £(y) at
the linear space He(r) formed by the mean-square closure of the linear span
of random variables of the form {(z) : || = r:

5/(\) € He(r) C’l{Zak£ xy), |z = r}

Such interpolation formula by Theorem 3 ([3], IV, § 1) has the form

— ofy) / £(@)dpn, (5)
Sn
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where

() = 5 ) )

Wn

Ity is Lebesgue measure on the unit sphere in Euclidian space R and w,, is
that sphere surface square.

—

The corresponding interpolation error o2 = E(£(y) — £(y))? equals

2 2
2 _ % by(r, p)
g _30<0) wn bo(’l“) *

(7)

When using the interpolation formula (5) in practice, the integral [&(z)du,
Sn
is replaced by the corresponding integral sum. Hence, we consider, instead

of the problem of interpolation based on the space

He(r) = Cl {Z (@), [z] = 7“} ;

the problem of interpolation of the value £(y) from observations on the space

Hx(r) = {Z aré(zr), 71 € X}> (8)

where X = {z1,...,2y} is some finite subset of the sphere S,, formed by
observation points.

So, the integral (5) replaced by finite linear combination (8) of values of
the field £(x) in points of a certain set X. Therefore, we obtain the problem
of accuracy of that replacing, which equivalent to that one of accuracy of
the interpolation formula (5) approximation.

Fix a set X = {x1,...,xny}. Since Hy C H¢, the properties of mean-

square projection imply that for any estimate {x(y) € Hx the identity

—— — — —

ok = E(&(y)—¢x(y)? = o*+0% = E((y) —£W)* + E(€(y) —Ex(v)* (9)

holds.
Definition 1. According to (9), a set X C S, will be called efficient if

the error of approximation of the integral (5) by the integral sum does not

exceed the error of the corresponding interpolation, that is, 0% < 2. In

this case the total variance of the approximate solution of the interpolation
problem does not exceed the value 0% < 202, where o2 is evaluated in (7).

The best mean-square interpolation of the value £(y) from values from
X is of the form

Ey) = anéla), (10)

where oy, k= 1,..., N are weight coefficients.



INTERPOLATION OF RANDOM FIELD 237

Denote by

Fv@) =Y o wel021, gieloni=2n—1,

k:pr<p

the cumulative ”distribution function” of weights {aq,...,ax} of points
{z1,...,2x} on the sphere. Here the inequality ¥} < P means the system
of step-by-step inequalities go,(j) <g;i=1,n—1.

In the paper [2] we get the following result.
Corollary. For any sequence of series of sets Xy = {x1,...,xn}, where
me = (r,7R),0< ) <o) < <o) =2m0<pl! <) <o <o) =
w1 = 2,n — 1, under condition

h(m,n)

>3 |dw

m>0 [=1

2
< 400, (11)

the mean-square approximating error o5 tends to zero as N — oo, provided
that weights

n—1

o = Cly, ) [J (e = i),
i=1
n—1 . .
and max | [T (¢ — ! )| = 0 as N — c.
i=1
Here

1 bin (1, p) n2

Cly,z) = =) Z:n?(nr) (2m +n —2)Cy2 (cosb),  (12)

m2>0

0 is angle between vectors x and y and C¥(x),m > 0, are Gegenbouer
polynomials which can be defined as coefficients in representation of function

(1—2tz+t*)" = i CY (x)t™, (13)

that is generatrices for those polynomials.

3. ASYMPTOTIC BEHAVIOR OF THE ERROR FOR THE UNIFORM
DISTRIBUTION

Let us consider the case where the points of the set Xy = {x1,..., 2y}
are uniformly distributed on the sphere S,,, that is, gplgl) = MA{D, Ej)
%,i = 2n, k, = 1,M. So, we have N = M"! points. From
Corollary 1 follows, that choice of interpolation weights of the form oy =
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_ . n—1 . .
“’c(%ilo((f’;) 21;[1(@,&) — o), where I() = (sin ©2)"2(sin 3)" . . . sin ,_; and
o(r) = 2”521“(71/2) fJan(Ar)(Ar)%Tndq)(A) is correlation function, mini-
0

mizes (moreover, reduces to zero) limit error o2 . Let’s investigate the

degree of convergence of 0% to zero in this case.

Since the random variables ¢!, are uncorrelated in accordance with (4)
and interpolation formula for @ has the form (10), taking into account
the spectral representation (1), we have

o~ —_—

0% = E((y) —&x(y)* =

h(m,n) | N _ 2 14
e 5 SIS ws e - o)) meop Y
m>0 I=1 |k=1 "

Evaluate equality in (14), taking into account the fact that the field is
extrapolating in the center of the sphere (it means that p = 0 and b, (r, p) =

0, 2.5(r).

2

— /\ — h(mmn) | N
— b, (7, —
ok =B &)y =a B 3 | X owS(@) - Gl S ()] b(r)
B (S gy ) -
= S o~ ) ol +
c2 2_ N x° n—2 an+n72()‘ r) anz
+W_Z(n—2) kzlakajbf ;l(m + T)ﬁcn@ (COS ij)dq)()\) =
7]: mf
= £ (S(a) — HEDY0(r) — Sbo(r)S*(a)+
c N Jﬂ( kj)
—1—\/3—” Z Ozk;Oé]f Z i dd(N),
k’,]zl 0 kj
(15)

N
Oy
where S(a) = ) ag, Ryj = 2rsin =%, and 6; are angles between vectors
k=1
xy and x;.

Substitute values of interpolation weights «y in last equality.

5 02 Wn T Wn T 62 Wn T 2
7 = S~ i) — Ei) (3503) +

Zbo(r)  cibo(r) 0
N e 2 00 J p—2 (2Ar sin ﬁ)
Cn 27" Lo(r) ) — — 2 2 o
i 2 () 190e) [ 5 o 120 =

N n—1\ 2 00.J,,—2 (2Arsin Bﬁ)
__wnp?(r) Cn (r)2mm—1 — — 2 2
=~ T X (W) l(%)l(%)ofmd@()\)'

Denote by F(p) = ‘P(T)CQ [Z1(@)d distribution function of weights {4, ...,
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ay}. If we pass in (15) to the limit as N — oo we obtain

Tn_2 (2Ary/2(1=co
Wnﬁo Cn _ B
i = ] (f [ e )dF<V>> 2R =
) f f fl _ Jn 2(2)\1"\/2(1—0059))
I, I, Arq/2(1— 0059))n 2

where 6 is the angle between u and v.
Recall that [(u) = (sinug)" 2(sinus)" ... sinu,_1, and

= (; ( dﬁdv> dD(N),

—_—
cos (T, U) = €Os Uy COS Uy + SN g Sin vy COS Uz COS U3+
+ sin Uy Sin vy Sin 43 Sin v3 COS Uy COSVy + . .. +
n—1
+(cosuq cosvy + sinwug sinvy) [ sinw; sinwv; =
i=2
= COS Ug COS Vg + SiN Uy SIN Vg COS U3z COS U3+
+ sin Uy Sin vq Sin w3 Sin v3 COS Uy COSVy + .. . +

n—1
+ cos(uy —vy) [] sinu;sinv;
=2
depends on cos(u; — vy) and variables @ = (ug,...,u,_1) and 0 =
(’UQ, c. ,’Un_l).
00 Jn 2(2)\7“ 2(1—cos0))
Denote H(cos(u; — v1),a 0] =, dd(N) =

(2Ar4/2(1—cos 9))

1(@)1(T)p(2r\/2(1 — cosh)), k = (k:2, cee kn_l), Hn_l = [0, 7]""2, and write

O

— , 2 2 M )2 M 1 1 . <
Z=(28) (20 $ 22 % Hieosel - 6).60.8)-

e =1 k=l
27 21
— f f f f H(cos(u1 — V1>, fl, \V/')dllldVldlvld\v/ .
Iy—1Ih—1 0 O

(16)
Taking into account evenness and summeriness of the function H (cos(u; —
v1), U, V) write

)2 M - < )2 M N 2T o~ <
Grl > H(cos(e — o), on,95) = B8 > H(cos(k — )28, ér, &5) =

k1,51=1 k1,j1=1
_ (en)? s 2 o oy o2m? NS s or . -
- M Z (1—M)H(COSSH7@]€,@]’) =2 M Z (1_M)H(COS3M,@]€,@]’),
|s|<M s=0
and also

1
J [ H(cos(u; — vi), 1, ¥)dudvy = 2(27)? [(1 — x)H(cos 27x, 1, V)dx.
0 0 0



240 NATALIYA SEMENOVS’KA

n—1
Denote G(z,1,?) = (1 — 2)H(cos 2rx, @, 9), I = [] [(ki—l) ki
=2
[]C[’ M]n 2‘
Evaluate the equality in (16).

2mp(r) 2 A 1 M
0'3( =2 (bo(f)cz) <M" 2) Z M Z G(%,@k,@y)_
Ej=1 s=0
-/ J fG i, v)dxdudv | =
Hn IHn 1 0
s+1
o (r) M M-1 M oo
(bo(T)C%> Z Z f f f (G(X,U,V) G(M’wk’%)) dxdudv =
];;’j::l s=0 RHJ S
o) \ 2 M—1 M-1 A
_ (bo(f)c%> i [ (G(x+ &, 0+ ko, v +jo)—
k,j=0 s=0 Iy ;5\ Ty /\ O

—G(Z, ko, jo)) drdudv,
where ¢ = (zr/M, oo,/ M).

() \ 2 ML M M o 1
% =-2(i53) = ' (E G ke j0) (e, 9) + o1 (5p)) dxdudy.
Since

[ I o keiemasangs = GG ko) (22) 022

Mn— 2
My ym O

(similarly for [ [ G (k¢;j¢)vidudv),
ISRV R ISRV

f f fG, M7k¢’J¢>UIdXdUdv_G/(M7k¢7.]¢)ﬁ (LQ>2’

Mn72
My O
we have
) 1 [ 27p(r) 2A ALY o2\ 270 / a2
Ox =~ (bo(mc%) kZO ZO (% (#) ZQ(G“’L'(%’W’WH
J=0 5= =

+GL Grokondo + 4 (55) Guli R0.00)) + oul) -

1 n—1
-4 (E8) S T H{FE s e
+G (2,0, 0) } dedidd + 0a(57)-

Note that for all i > 2 integral fG’ 0, v)dy = G(x,1,v) |§= 0, since

sinu; is a component of the functlon G(z,u,0).



INTERPOLATION OF RANDOM FIELD 241

(Similarly, [ G/, (x,1,V)dv; = 0.)
0

So,

O <2W ) // 0, dudv—l—o(l\l/[) (17)

—1n1
Taking into account obtained result we formulate the following theorem.
Theorem 1. Let the sphere S, be uniformly divided by the set Xy =
{x1,...,xn}, N = M"L of points with spherical angles <p,(€1) = 27m(ky —
1)/M, o\ = x(k;—1)/M,i = 2,n — 1. Let the coefficients cy = %@%,
where 1(p) = (sin pg)" 2 (sin ¢3)" 3 .. .sinp,_1. Then the asymptotic mean-
square error of the estimate

— ( T 1 N

£x(0) = e 62. ¥ Zlgpk (7)

18

S _ 1 (o) N I
A= () v / O () + ol =) (19

Proof. Taking into account the value H (cos(u; —vy), @, 0), from (17) obtain
Eg; =1 (lir(f)(;)) /[ . 2r\/2 1 — cos(t, v)))dady + o( &) =

nlnl
_ 1
M

) f fl ([T =) [uy=vi= odudv+o(ﬁ):
=+ (bo ) f [ o(|T =) [wymvi—0 dpta (W) dpn(¥) + o(&) =

Hll Hn
Il Sn

=L (bo‘p(fg)@) Varsfg 0, 0)dpn () + o(5)-

Corollary 1. The uniformly distributed set Xy = {x1,...,25}, N =

M=t of observations on the sphere S, with interpolation weights oy, =

@éggigff) 2“;,71 15 efficient starting from the volume

1

Var 0, 0)du, (W) )"~
. <(p(r) )2- 8{5( )dpan ()
bo(r)c;, 0(0) — &)

bo(r)
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Proof. The proof follows directly from the Definition 1, by which <;§\< ~ o2,

and from formulas (18) and (7).
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