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THE FOKKER–PLANCK–KOLMOGOROV EQUATIONS FOR SOME
DEGENERATE DIFFUSION PROCESSES

We clarify the connection between diffusion processes and partial differential equa-
tions of the parabolic type. The emphasis is on degenerate parabolic equations.
These equations are a generalization of the classical Kolmogorov equation of diffu-
sion with inertia which may be treated as the Fokker-Planck-Kolmogorov equations
for the respectively degenerate diffusion processes. The basic results relating to the
fundamental solution and the correct solvability of the Cauchy problem are presented.

1. Diffusion processes (DPs) and partial differential equations (PDE)

DPs occupy, probably, a central place in the theory of Markov processes. This can be
explained by a few reasons.

Firstly, DPs are exact enough models of important physical processes. In particular,
we mention a model of diffusible particle in liquids — the phenomenon opened by the
English botanist R. Brown in 1828.

Secondly, just DP is a binding link between the theory of stochastic processes and the
theory of PDE. Thus, it follows to mark the reciprocity of influences of these theories:
while studying the properties of DP, the analytical results from the theory of PDE, and
vice versa, while studying the Cauchy problem, the boundary-value problems for PDE
probabilistic methods are used.

One of the important problems of DP theory is the development of methods of DP
construction at the known diffusion coefficients: the diffusion matrix b, drift vector a,
and coefficient of absorption c. If the process isn’t torn off, then c = 0.

From the point on the phenomenon of diffusion, the drift vector a is a macroscopic
velocity of the liquid, and the diffusion matrix b characterizes the random movement of
a particle as a result of collisions with molecules of liquid which are in a thermal motion.
Which conditions should be satisfied by a vector function a and a matrix function b
characteristic of DP? What does the fact of existence of local characteristics of motion
for some DP mean?

A.N. Kolmogorov was the first who gave a solution to this problem in 1931. In his
work [1], he selected the class of continuous Markov processes which later got the name
of DP. By definition, a process which has the value in Rm and the transition density
P (s, x, t, Γ), 0 ≤ s < t, x ∈ Rm, where Γ is a Borel subset of Rm, is called DP if the
following conditions are satisfied:

1) for any ε > 0,

(1) lim
Δt→0

1
Δt

∫
{|y−x|>ε}

P (t, x, t+ Δt, dy) = 0,

2) there exist the functions a and b such that, for some ε > 0,

2000 Mathematics Subject Classification. Primary 35K15, 35K65, 60J60; Secondary 35K70, 60J65.
Key words and phrases. diffusion process, transition density to a process, Fokker–Planck–Kolmogorov

equation, degenerate parabolic equation, fundamental solution, Cauchy problem.

57



58 S. D. IVASYSHEN AND I. P. MEDYNSKY

(2)
limΔt→0

1
Δt

∫
{|y−x|<ε}

(y − x)P (t, x, t+ Δt, dy) = a (t, x) ,

limΔt→0
1

Δt

∫
{|y−x|<ε}

(y − x, θ)2 P (t, x, t+ Δt, dy) = (b (t, x) θ, θ) ,

where θ is an arbitrary vector in Rm.
The functions a and b defined by formulas (2) are local characteristics of DP. Obviously,

the matrix b is nonnegative definite. In the mentioned work, A.N. Kolmogorov showed
that DP are closely connected with the second-order PDE of the parabolic type. Namely,
if a function P (s, x, t, Γ) determines the transition density to DP with the drift vector
a and the diffusion matrix b, then, under such conditions, the function

(3) u (s, x) :=
∫

Rm

ϕ (y)P (s, x, t, dy),

is the solution in a layer { (s, x)| s ∈ [0, t) , x ∈ Rm} for the equation

(4) ∂su+
1
2

m∑
j, k=1

bjk (s, x) ∂xj∂xk
u+

m∑
j=1

aj (s, x)∂xju = 0

with the initial condition

(5) lim
s→t

u (s, x) = ϕ (x) .

Here, bjk (s) are the elements of the matrix b, aj are coordinates of a vector a, and xj
are coordinates of a vector x.

Except the inverse equation (4), the so-called direct equation is obtained in that work
as well. Both equations are PDE of the parabolic type.

Let us pay attention to the fact that direct equations for some special cases have been
got by the physicists Fokker and Planck a bit earlier, who studied the phenomenon of
diffusion. That’s why it is also called the Fokker–Planck equation.

Kolmogorov’s result showed the way, following which one could hope to find a solution
to the problem of DP construction with given diffusion coefficients. In this way, a lot of
important analytical results connected with the study of Cauchy problem (4), (5) was
obtained. First of all, it is:

– existence of a fundamental solution of the Cauchy problem (FSCP);
– properties of the FSCP:

• estimates of the FSCP and its derivatives,
• positivity,
• normality ,
• the convolution formula;

– properties of the Poisson and volume potentials;
– conditions for the existence of integral representations of solutions;
– correct solvability for the Cauchy problem in the corresponding functional spaces.

It is a natural to expect that such results can be obtained at minimal assumptions
about the diffusion coefficients.

This definition of DP is based only on the transition density function. In a more
advanced theory of Markov processes [2], DP in Rm is a continuous strictly Markov
process, whose characteristic operator A has the following property: (Af) (x) is defined
for all functions f which are given and twice continuously differentiable in any neighbor-
hood of x ∈ Rm. The characteristic operator A of DP on the set of twice continuously
differentiable functions coincides with the elliptic operator L which is defined by the
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formula

(Lf) (x) :=
1
2

m∑
j, k=1

bjk (x)∂xj∂xk
f +

m∑
j=1

aj (x)∂xjf + c (x) f.

The operator L is called a generating differential operator for DP.
Together with the elaboration of analytical methods, the direct stochastic methods of

DP construction were developed as well. While using such an approach, the path of a
process satisfies the stochastic differential equation

dx (t) = a (t, x (t)) dt+B (t, x (t)) dW (t) ,

where W is the m-dimensional Wiener process, and B is such m-order square matrix
that b = BB∗.

Many scientists studied the development and the usage of analytical methods of DP
construction according to their local characteristics under different assumptions. Among
them, we mention such scientists as N. Wiener, A.N. Kolmogorov, V. Feller, M.V. Krylov,
A. Tanaka, I.I. Gikhman, A.V. Skorokhod, and M.I. Portenko. Because of their efforts,
not only different theorems on the DP existence where proved under general assumptions
about the diffusion coefficients, but also different generalizations of the very notion for
DP were obtained. Thus, in monograph [3], the processes with a local unbounded drift
vector and a sufficiently smooth diffusion matrix were constructed. Such processes the
author call the generalized DP.

Note that Eq. (4), which is a starting point in the analytical approach, is the uniformly
parabolic equation (in the sense of the theory of PDE), so it is not degenerate as well.

2. Degenerate parabolic Kolmogorov-type equations

These equations are a natural generalization of the classical Kolmogorov equation of
diffusion with inertia. This equation appears in the study of models for the Brown-
ian motion. In the classical theory of the Brownian motion developed by Einstein and
Smoluchowski [4], [5], the inertia of a Brownian particle is neglected, i.e., the mass of a
particle is actually assumed equal to 0. Therefore, a Brownian particle in the Einstein–
Smoluchowski theory cannot have a finite velocity. The Brownian motion of a physical
system in the Einstein–Smoluchowski approximation is a continuous Markov process in
the coordinate space (the Wiener process, for the case of a free particle).

The fact of the non-differentiability of Brownian paths in the Einstein–Smoluchowski
theory is closely related to the idealization made in this theory (the neglect of inertia)
making it invalid on small time intervals. For the simplest case of the Brownian motion
of a free particle, a theory taking inertia into account was developed as early as 1930 by
Uhlenbeck and Ornstein [6]. In this more precise theory, paths are already differentiable
(but do not have the second derivative, so that now the acceleration becomes infinite).

In fact, the same generalization is contained in paper [7] by A.N. Kolmogorov. He
considered the general case of the Brownian motion for an arbitrary physical system with
n degrees of freedom. According to Kolmogorov, inertia is taken into account if a state of
the system is described by values of n coordinates q1, . . . , qn and n their time derivatives
(velocities) q̇1, . . . , q̇n. Here, the model of the Brownian motion is a continuous Markov
process in the 2n- dimensional phase space of coordinates and velocities.

In paper [7], it was assumed that, whenever we know the values of q := (q1, . . . , qn)
and q̇ := (q̇1, . . . , q̇n) at an instant of time t, we can find the probability density

G(t, q, q̇; t′, q′, q̇′)

of possible values q and q̇ of the coordinates and their time derivatives at an arbitrary
instant t′ > t. It is assumed that G does not depend on the behavior of the system before
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the instant t (there is no aftereffect, the process is of the Markov type). It is proved that
the function G is a FSCP for the Fokker–Planck differential equation

(6) ∂t′g = −
n∑
j=1

q̇′j∂q′jg −
n∑
j=1

∂q̇′j (fj(t′, q′, q̇′)g) +
n∑

j,l=1

∂q̇′j∂q̇′l (kjl(t′, q′, q̇′)g) .

If n = 1, then this equation has the form

(7) ∂t′g = −q̇∂q′g − ∂q̇′ (f (t′, q′, q̇′) g) + ∂2
q̇′ (k (t′, q′, q̇′) g) .

If f and k are constants, then, as A.N. Kolmogorov showed, a FSCP for Eq. (7) is
given by the formula

G (t, q, q̇; t′, q′, q̇′) =

= 2
√

3π−1k−2 (t′ − t)−2 exp
{
−(4k (t′ − t))−1 (q̇′ − q̇ − f (t′ − t))2 −

−3k−1 (t′ − t)−3 (
q′ − q − 2−1 (q̇′ + q̇) (t′ − t))2} ,

t < t′, {q, q̇, q′, q̇′} ⊂ R .

This is a classical formula for a FSCP for Kolmogorov’s equation of diffusion with inertia.
Equations (6) and (7) are a prototype for the family of evolution equations arising in

the kinetic theory of gases that take the following general form:

(8) Su = I (u) .

Here, the function R2n � x �→ u (x, t) ∈ R is the density of particles which have velocity
x1, . . . , xn and position xn+1 , . . . , x2n at the time t;

Su := ∂tu+
n∑
j=1

xj∂xn+ju

is the so-called total derivative of u, and I (u) describes some kind of collision. This last
term I (u) can take different forms, either linear or nonlinear. For instance, in the usual
Fokker–Planck equation, we have

I (u) = −
n∑

j, l=1

ajj∂
2
xjxl

u+
n∑
j=1

aj∂xju+ au

.
The term I (u) may also occur in the divergence form

I (u) = −
n∑

j,l=1

∂xj

(
ajl(t, x)∂xju+ bj(t, x)u

)
+

n∑
j=1

aj(t, x)∂xju+ c(t, x)u.

The nonlinear collision operator in the Fokker–Planck–Landau equation has the form

I (u) =
n∑

j.l=1

∂xj (ajl (z, u) ∂xl
u+ bj (z, u)).

While studying mathematical models of options, a model Markov type appears in
the case where the dynamics is defined by a stochastic differential equation in the N -
dimensional space of states

(9) dx(t) = (Bx(t) + b (t, x(t))) dt+ σ (t, x(t)) dW (t),
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where W is a d-dimensional Wiener process, d ≤ N , B := (bjl) is an N×N matrix which
has constant real entries, σ is an N × d matrix, and the vector b := (b1, . . . , bN) is such
that 0 = bd+1 = · · · = bN .

Under some assumptions about the matrices σ, B, and b, the transition density for
Eq. (9) is a FSCP for the equation

1
2

d∑
j,l=1

ajl (t, x) ∂xj∂xl
u+

N∑
j,l=1

bjlxl∂xl
u+

+
d∑
j=1

bj (t, x) ∂xju+ ∂tu = 0 .(10)

Many works have been recently devoted to the study of mathematical models of op-
tions (see a review article [8], where a wide survey of the related literature is presented).
In these works, different problems connected with such models are investigated by ana-
lytical, probabilistic, and numerical methods.

Differential equations with a nonlinear total derivative term of the form

(11) Δxu+ ∂yg (u)− ∂tu = f

have been considered for convection-diffusion models and for pricing models of options
with memory feedback. The linearized equation (11) can be reduced, if the derivative of
the function g is different from zero and smooth enough, to the Kolmogorov equation.

Equations (6)–(8), (10), and their generalization are degenerate equations of the par-
abolic type. Such equations belong to a class of ultraparabolic or elliptic-parabolic equa-
tions. They are called the Fokker–Planck–Kolmogorov equations for the respectively
degenerate diffusion processes.

The development of the theory of ultraparabolic equations of the Kolmogorov type
in subsequent investigations is aimed at finding as weaker conditions as possible for the
existence of a FSCP, obtaining its precise estimates, and considering equations with a
more complicated structure. The investigation of the FSCP and the correct solvability
of the Cauchy problem for degenerate parabolic equations of the Kolmogorov type under
different assumptions for coefficients of equations was executed by M. Weber, A.M. Il’in,
I.M. Sonin, Ya.I. Shatyro, L.P. Kuptsov, S.D. Eidelman, A.P. Malitska, L.M. Tychinska.
S.D. Ivasyshen, L.N. Androsova, and V.S. Dron’ (see monograph [9]).

Equations of the Kolmogorov type which have the form

Lu : =
p0∑

j, l=1

ajl (t, x) ∂xj∂xl
u+

p0∑
j=1

aj (t, x) ∂xju+ c (t, x) u+

+
N∑

j, l=1

bjlxj ∂xl
u− ∂tu = 0 ,(12)

were investigated in the series of papers of Italian mathematicians (see the review article
[10]). Here, 1 ≤ p0 < N , the matrix A0 := (ajl)

p0
j, l=1 is symmetric and positive definite,

and B := (bjl)
N
j, l=1 is constant real matrix taking the block form⎛⎜⎜⎜⎜⎝

∗ B1 0 . . . 0
∗ ∗ B2 . . . 0
. . . . . . . . . . . . . . .
∗ ∗ ∗ . . . Br
∗ ∗ ∗ . . . ∗

⎞⎟⎟⎟⎟⎠ .
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Here Bj-blocks are pj−1 × pj matrices of rank pj, where p0, p1, . . . , pr are positive
integers such that p0 ≥ p1 ≥ · · · ≥ pr ≥ 1, p0 +p1 + · · ·+pr = N , and the blocks denoted
by ∗ are arbitrary.

Note that, under the conditions imposed upon B, the well-known Hörmander’s hy-
poellipticity condition is satisfied by the operator L with the coefficients in (12) which
are fixed at any point (t, x).

It is well known [2], [11] that a nondegenerate DP with sufficiently regular character-
istics possesses a smooth transition density. In general, a degeneration of the diffusion
matrix leads to the nonexistence of the transition probability density. However, there
exist some classes of degenerate processes with smooth transition densities. As was
mentioned above, the processes of the Brownian motion with inertia considered by A.N.
Kolmogorov, A.M. Il’in, R.Z. Khasminsky, and others are among such processes.In paper
[12], I.M. Sonin studied a natural generalization of the process of diffusion with inertia.
For the class of processes considered, the transition densities are constructed as a FSCP
for the equations

(13)
∂tu =

((
1
2

∑n
j, l=1 ajl (t, x, y, z) ∂yj∂yl

+
∑n

j=1 aj (t, x, y, z) ∂yj +

+
∑n
j=1 bj (t, x, y, z) ∂xj +

∑n
j=1 cj (t, x, y, z) ∂zj

)
u, {x, y, z} ⊂ Rn ,

where bj (t, x, y, z) behave “approximately” like yj , and cj (t, x, y, z) as xj . The exis-
tence of a FSCP for Eq. (13) under condition that the coefficients of the equation are
sufficiently smooth functions is proved.

Note that the results of construction and investigation of properties of a FSCP for
equations which have form (13) under weaker conditions for their coefficients are con-
tained in monograph [9]. Some novel results about the FSCP and the correct solvability
of the Cauchy problem for equations like (13) are presented in the following sections.

3. FSCP for the Fokker–Planck–Kolmogorov equations of degenerate

diffusion processes

The main object of our study in this section, the FSCP for some degenerate parabolic
equations, can be interpreted in a natural way as the transition density of a respective
diffusion process with a value from the n-dimensional phase space Rn of points x with
three different groups of phase coordinates xs := (xs1, . . . , xsns) ∈ Rns , s ∈ {1, 2, 3},
n = n1 + n2 + n3, and 1 ≤ n3 ≤ n2 ≤ n1.

We consider the equation with real-valued coefficients

(S −∑n1
j, l=1 ajl (t, x) ∂x1j∂x1l

−∑n1
j=1 aj (t, x) ∂x1j−

−a0 (t, x))u(t, x) = f(t, x), (t, x) ∈ Π(0, T ] ,(14)

and the corresponding adjoint equation

S∗v (τ, ξ) −∑n1
j,l=1 ∂ξ1j∂ξ1l

(ajl (τ, ξ) v (τ, ξ)) +
∑n1
j=1 ∂ξ1j (aj (τ, ξ) v (τ, ξ))−

−a0 (τ, ξ) v (τ, ξ) = g (τ, ξ) , (τ, ξ) ∈ Π[0, T ) ,(15)

where ΠH := {(t, x)| t ∈ H, x ∈ Rn}, if H ⊂ R; T is a given positive number; S is a
differential expression determined as

S := ∂t −
n2∑
j=1

x1j∂x2j −
n3∑
j=1

x2j∂x3j

or the Lie derivative of a vector field, and S∗ is the expression adjoint to S.
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Before making assumption on the coefficients of Eq. (14), we introduce the following
notation:

d (x; ξ) :=
3∑
s=1

|xs − ξs|1/(2s−1)
, d (t, x; τ, ξ) := |t− τ |1/2 + d (x; ξ)

are the distances between points x and ξ, (t, x) and (τ, ξ) , respectively;
Δξ
xf (·, x) := f (·, x)− f (·, ξ) , Δτ, ξ

t, xf(t, x, ·) := f(t, x, ·)− f(τ, ξ, ·);
X (t) := (X1 (t) , X2 (t) , X3 (t)) , X1 (t) := x1, Xs (t) := (Xs1 (t) , . . . , Xsns (t)), s ∈

{2, 3}, X2j (t) := x2j + tx1j , X3j (t) := x3j + tx2j + 2−1t2x1j .
A function f(t, x), (t, x) ∈ Π[0, T ], is said to be Hölder continuous in the exponent

α ∈ (0, 1) in Π[0, T ] if there exist a constant C > 0 such that

|Δτ, ξ
t, xf(t, x)| ≤ C(d(t,X(t− τ); τ, ξ))α,

for all {(t, x), (τ, ξ)} ⊂ Π[0, T ].
For real-valued coefficients of Eq. (14), we use the following conditions:
A1) there exist a constant δ > 0 such that, for any (t, x) ∈ Π[0, T ] and σ1 ∈ Rn1 , the

following inequality is valid:
n1∑

j, l=1

ajl (t, x) σ1jσ1l ≥ δ |σ1|2 ;

A2) the coefficients ajl, aj , and a0 are bounded and Hölder continuous in the exponent
α ∈ (0, 1)in Π[0, T ];
A3) there exist the derivatives ∂x1j ∂x1l ajl, and ∂x1j aj bounded and Hölder contin-

uous in the exponent α ∈ (0, 1)in Π[0, T ]

The following theorem is valid.

Theorem 1. If conditions A1, A2 are satisfied, then there exists a FSCP Z for Eq. (14)
with the estimates∣∣∂k1x1

Z (t, x; τ, ξ)
∣∣ ≤ C (t− τ)−M−|k1|/2Ec (t, x; τ, ξ) , |k1| ≤ 2,

|SZ (t, x; τ, ξ)| ≤ C (t− τ )−M−1
Ec (t, x; τ, ξ) ,

|Δx
′

x ∂
k1
x1
Z(t, x; τ, ξ)| ≤ C(d(x;x

′
)α(t− τ)−M−(|k1|+α)/2 ×

×(Ec(t, x; τ, ξ) + Ec(t, x
′
; τ, ξ)), |k1| ≤ 2,

|Δx
′

x SZ(t, x; τ, ξ)| ≤ C(d(x;x
′
)α(t− τ)−M−1−α/2 ×

×(Ec(t, x; τ, ξ) + Ec(t, x
′
; τ, ξ)),

|
∫

Rn

∂k1x1
Z(t, x; τ, ξ) dξ| ≤ C(t− τ)−(|k1|−α)/2, 0 < |k1| ≤ 2,

(16) |
∫

Rn

∂k1x1
Z(t, x; τ, ξ) dξ| ≤ C(t− τ)−1+α/2,

where 0 ≤ τ < t ≤ T, {x, x′, ξ} ⊂ Rn, C, and c are positive constants, M := (n1 +
3n2 + 5n3)/2, Ec (t, x; τ, ξ) := exp{−c∑3

s=1 (t− τ)1−2s|Xs(t− τ)− ξ|2}.
If condition A3 is additionally satisfied, then a FSCP Z has such properties:
1) the FSCP is normal, i.e., a function

Z∗ (τ, ξ; t, x) := Z (t, x; τ, ξ) , 0 ≤ τ < t ≤ T, {ξ, x} ⊂ Rn.

is the FSCP for the adjoint equation (15);
2) the following convolution formula holds:

Z (t, x; τ, ξ) =
∫

Rn

Z (t, x; λ, y) Z (λ, y; τ, ξ) dy, 0 ≤ τ < λ < t ≤ T, {x, ξ} ⊂ Rn ;



64 S. D. IVASYSHEN AND I. P. MEDYNSKY

3) there exists only one normal FSCP for Eq. (14);
4) the coefficients of Eq. (14) have a representation via the function Z:

ajl (t, x) = 2−1 limτ→t

(
(t− τ )−1 ∫

Rn (y1j − x1j) (y1l − x1l)Z (t, x; τ, y) dy
)
,

aj (t, x) = limτ→t

(
(t− τ )−1 ∫

Rn (y1j − x1j)Z (t, x; τ, y) dy
)
,

a0 (t, x) = limτ→t

(
(t− τ)−1

(∫ t
τ
dθ
∫

Rn Z (t, x; θ, y) dy − 1
))

, (t, x) ∈ Π(0, T ];

5) the function Z is positive;
6) there exists such a number Δ ∈ (0, T ), that, for any t0 ∈ [0, T −Δ], (t, x) ∈

Π(t0, t0+Δ), and δ ∈ (0, t− t0) , there exist such numbers ω > 0 and γ > 0 that the
following lower estimate is valid:

Z (t, x; τ, ξ) ≥ ω exp
{
−γ |ξ|2

}
, (τ, ξ) ∈ Π[t0, t−δ].

4. Correct solvability of the Cauchy problem

The results of Section 3 allow us to investigate properties of the potentials generating
by FSCP Z and then, by basing on these properties, to prove various theorems about
the correct solvability of the Cauchy problem for Eq. (14). Below, we present some of
them.

We use the necessary norms and spaces and define the functions

�k (t, �a) := (k1 (t, a1) , k2 (t, a2) , k3 (t, a3)) ; �l (t) := (l1 (t) , l2 (t) , l3 (t)) ;

ks (t, as) := c0as
(
c0 − ast2s−1

)−1
, s ∈ {1, 2, 3} ;

l1 (t) := k1 (t, a1) + 2t2k2 (t, a2) + t4k3 (t, a3) ,

l2 (t) := 2k2 (t, a2) + 4t2k3 (t, a3) , l3 (t) := 4k3 (t, a3) , t ∈ [0, T ] ,

where c0 ∈ (0, c), c is a constant from the estimates of FSCP (16), and �a := (a1, a2, a3)
are a set of nonnegative numbers such that T ≤ mins∈{1,2,3}(c0/as)1/(2s−1).

Let p ∈ [1, ∞] , and let u (t, x), (t, x) ∈ Π[0, T ], be a given function measurable in x
for any t ∈ [0, T ]. For every t ∈ [0, T ] , we define the norms

‖u (t, · )‖�k(t,�a)p :=

∥∥∥∥∥u (t, x) exp

{
−

3∑
s=1

ks(t, as)|Xs(t)|2
}∥∥∥∥∥

Lp(Rn)

,

‖u (t, · )‖�l(t)p :=

∥∥∥∥∥u (t, x) exp

{
−

3∑
s=1

ls(t)|xs|2
}∥∥∥∥∥

Lp(Rn)

.

We use the following spaces: L
�k(t,�a)
p , t ∈ [0, T ] , p ∈ [1, ∞] , the spaces of measur-

able functions ϕ : Rn → R with finite norms ‖ϕ‖�k(t,�a)p ; L�ap := L
�k(0, �a)
p ; M�a is the space of

generalized Borel measures μ on Rn satisfying the condition

‖μ‖�a :=
∫

Rn

exp

{
−

3∑
s=1

as|xs|2
}
d |μ| (x) <∞,

where |μ| is the total variation of μ; L−�l(T )
1 is the space of measurable functions ψ : Rn →

R with a finite norm ∥∥∥∥∥ψ (x) exp

{
3∑
s=1

ls(T )|xs|2
}∥∥∥∥∥

L1(Rn)

;
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C
−�l(T )
0 is the space of continuous functions ψ : Rn → R such that

|ψ (x)| exp

{
3∑
s=1

ls(T )|xs|2
}
→ 0,

as |x| → ∞.
For the term on the right-hand side of Eq. (14), we use the following conditions:
Bp) the function f is continuous, satisfies the local Hölder condition on x respect to the

distance d uniformly in t in Π[0, T ], and, for any t ∈ (0, T ] , the expressions ‖f (t, · )‖�k(t,�a)p

and Fp (t) :=
∫ t
0 ‖f (τ, · )‖�k(τ,�a)p dτ are finite, where p ∈ [1, ∞].

Theorem 2. Suppose that conditions A1-A3are satisfied. Then:
1) for any function ϕ ∈ L�ap and any function f that satisfy condition Bp, p ∈ [1, ∞] ,

the formula

u (t, x) =
∫

Rn

Z (t, x; 0, ξ)ϕ (ξ) dξ +

(17) +
∫ t

0

dτ

∫
Rn

Z (t, x; τ, ξ)f (τ, ξ) dξ, , (t, x) ∈ Π(0, T ] ,

defines the unique solution of Eq. (14) satisfying the estimates

‖u (t, · )‖�k(t,�a)p ≤ C
(
‖ϕ‖�ap + Fp (t)

)
, t ∈ (0, T ] ,

and the relations

(18) lim
t→0

‖u (t, · )− ϕ ( · )‖�l(t)p = 0,

and, for any function ψ ∈ L−�l(T )
1 ,

(19) lim
t→0

∫
Rn

ψ (x)u (t, x) dx =
∫

Rn

ψ (x)ϕ (x) dx

for p ∈ [1, ∞) and p = ∞, respectively;
2) for an arbitrary generalizing measure μ ∈M�a and for any function f which satisfy

condition B1, the formula

u (t, x) =
∫

Rn

Z (t, x; 0, ξ) dμ (ξ) +

(20) +
∫ t

0

dτ

∫
Rn

Z (t, x; τ, ξ)f (τ, ξ) dξ, (t, x) ∈ Π(0, T ] ,

defines the unique solution of Eq. (14) satisfying the estimates

‖u (t, · )‖�k(t,�a)1 ≤ C
(
‖μ‖�a + F1 (t)

)
, t ∈ (0, T ] ,

and, for any function ψ ∈ C−�l(T )
0 , the relations

(21) lim
t→0

∫
Rn

ψ (x) u (t, x) dx =
∫

Rn

ψ (x) dμ (x) .

The following theorem is inverse (in some sense) to Theorem 2.
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Theorem 3. Suppose that the coefficients of Eq. (14) satisfy conditions A1-A3, function
f satisfies condition Bp, and the solution u is defined in the layer Π(0, T ] and satisfies
the conditions

(22) ‖u (t, · )‖�k(t,�a)p ≤ C, t ∈ (0, T ] ,

with some constants C > 0 and p ∈ [1, ∞]. Then, if p ∈ (1, ∞], then exists a unique
function ϕ ∈ L�ap, and if p = 1, then there exists a unique generalized measure μ ∈ M�a

such that the solution u is represented by formula (17) or (20).

Corollary 1. Theorems 2 and 3, under conditions on the coefficients and the right-hand
side f of Eq. (14), yield

1) the spaces L�ap and M�a are the sets of initial values of the solutions of Eq. (14) if
and only if these solutions satisfy condition (22) with p ∈ (1,∞] and p = 1, respectively;

2) solution (14) has representations in form (17) or (20) with φ ∈ L�ap and μ ∈M�a if
and only if condition (22) is valid;

3) under condition (22), solutions of Eq. (14) satisfy the initial condition with t=0 in
the sense of (18), (19), and (21).

By concluding, we formulate a theorem, whose proof is based on the maximum prin-
ciple for solutions of Eq. (14).

Theorem 4. Suppose that conditions A1-A3 are satisfied. Then the Cauchy problem for
Eq. (14) cannot have more than one nonnegative solution.
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