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SHIZAN FANG

ON THE BEHAVIOUR OF METRICS Hs ON LOOP GROUPS

The heat measures with respect to metric Hs on loop groups were introduced by P.
Malliavin; its behaviour as s ↓ 1/2 of finite dimensional distributions was studied
by Y. Inahama [J. Funct. Anal., 198 (2003), p. 311-340]. In this note, we shall
transfer this problem to the long time behaviour of diffusion processes. We conclude
the result by using a metric equivalent form for the lower bound of Ricci tensors.

Let G be a semi-simple compact Lie group and G its Lie algebra endowed with an AdG
invariant metric 〈 , 〉G . Let S1 be the unit circle and denote by C∞(S1,G) the space of
smooth functions defined on S1, taking values in G. Each h ∈ C∞(S1,G) has the Fourier
series expansion

h(θ) =
∑
n∈Z

ĥ(n) einθ, with ĥ(n) =
∫
S1
h(θ)e−inθ

dθ

2π
.

The metric Hs on C∞(S1,G) is defined by

|h|2s =
∑
n∈Z

(1 + n2)s|ĥ(n)|2G .

Let
Hs(G) =

{
h ∈ L2(S1,G); |h|s < +∞}.

By Sobolev embedding theorem, when s > 1/2, Hs(G) ⊂ C(S1,G). In this case,
there is a Gaussian measure μs on C(S1,G) such that (C(S1,G), Hs(G), μs) becomes an
abstract Wiener space in the sense of L. Gross [7].

1. Green functions associated to Hs

Let {un; n ≥ 1} be an orthonormal basis of Hs(R) and {ε1, · · · , εd} an orthonormal
basis of G. Define

(1) en,α(θ) = un(θ)εα, n ≥ 1, α = 1, · · · , d.
Then {en,α; n ≥ 1, α = 1, · · · , d} is an orthonormal basis of Hs(G). Let G(s)(θ1, θ2)

be the Green function on S1 associated to the operator (1 − d2

dθ2 )s; that is the solution
in the distribution sense of

(1− d2

dθ2
)sG(s)(θ1, ·) = δθ1 ,

where δθ1 is the Dirac mass at θ1. We have the relation

(2) G(s)(θ1, θ2) =
∑
n≥1

un(θ1)un(θ2).

If we consider

u0 = 1, u2n−1(θ) =
√

2 cosnθ
(1 + n2)s/2

, u2n(θ) =
√

2 sinnθ
(1 + n2)s/2

, n ≥ 1,
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we obtain the following expression (see [9])

(3) G(s)(θ1, θ2) =
∑
n∈Z

ein(θ1−θ2)

(1 + n2)s
.

We have

(4) (G(s)(θ1, ·), u)s = u(θ1) for u ∈ Hs.

2. Brownian motion on the loop group

Let {xn,α; n ≥ 1, α = 1, . . . , d} be a sequence of independent standard real valued
Brownian motion, defined on a probability space (Ω,F , P ). Consider the Random series

(5) x(t, θ) =
∑
n,α

xn,α(t)en,α(θ).

It is known that for s > 1/2, almost surely the series (5) converges uniformly with
respect to (t, θ) ∈ [0, 1]× S1. We have the relation, using (2)

(6) E

(
〈x(t, θ1), a〉G〈x(s, θ2), b〉G

)
= (t ∧ s)G(θ1, θ2) 〈a, b〉G , a, b ∈ G.

For θ ∈ S1 given, following P. Malliavin [10], we consider the SDE on G

(7) dtgx(t, θ) = gx(t, θ) ◦ dtx(t, θ), gx(0, θ) = e.

It has been proved that in [10] and in [2] that (t, θ) → gx(t, θ) has a continuous version.
Then t→ gx(t, ·) is a continuous process taking values in the loop group

L(G) = C(S1, G).

The geometry of L(G) endowed with the metric Hs was investigated in [6]. For
s > 1/2, geometric stochastic analysis was developed in [3, 2, 1, 4, 5, 8, 9], to mention
but a few.

3. A geometric result

Let M be a compact smooth Riemannian manifold. Denote by ρ the Riemannian
distance and m the normalized Riemannian volume of M . Let Ric be the Ricci tensor on
M . There are several equivalent descriptions for the lower bound of Ric. Let Pt(x, dy)
be the heat measure on M starting from x ∈ M , then Pt(x, dy) = pt(x, y)m(dy). For a
probability measure μ on M , we define P ∗

t μ by∫
M

f dP ∗
t μ =

∫
M

f(y)Pt(x, dy) dμ(x).

μ is said to invariant under Pt if P ∗
t μ = μ. It is known that the Riemannian volume

m is the unique invariant measure of Pt. The following result is taken from [11]:

Theorem 3.1. The following properties are equivalent:

(i) Ric ≥ K, which means that 〈Ricxv, v〉x ≥ K|v|2x, where 〈 , 〉x is the inner product
in the tangent space TxM .

(ii) For any probability measures μ, ν on M ,

(8) W2(P ∗
t μ, P

∗
t ν) ≤ e−KtW2(μ, ν), t ≥ 0

where W2 denotes the Wasserstein distance between two probability measures, which is
defined by

(9) W 2
2 (μ, ν) = inf

{∫
M×M

ρ(x, y)2 π(dx, dy); π ∈ C(μ, ν)
}
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where C(μ, ν) denotes the totality of probability measures on the product space having μ
and ν as marginal laws.

In particular, taking μ = m and ν = δx in (8), we get

(10) W2(m,Pt(x, dy)) ≤ e−KtW2(m, δx), t ≥ 0

4. Main result

Fix a partition P = {θ1 < · · · < θN} of S1. Consider the stochastic process

t→ (gx(t, θ1), · · · , gx(t, θN ))

on GP . In this note, we will give a new proof to the following result, due to [9].

Theorem 4.1. Let μ(s)
t be the law of (gx(t, θ1), · · · , gx(t, θN )) on GP . Then for any

t > 0, when s ↓ 1/2, μ(s)
t converges weakly to the normalized Haar measure dg1 · · ·dgN

on GP .

Proof. Denote by G(s) = (G(s)(θi, θj))1≤i,j≤N , which is a positive definite matrix.
Let Q(s) = (Q(s)

ij )1≤i,j≤N be the inverse matrix of G(s). Equipe GP with the metric

(11) |a|2P =
N∑

i,j=1

Q
(s)
ij 〈ai, aj〉G , a = (a1, · · · , aN) ∈ GP .

According to (6), under this metric, t→ (x(t, θ1), · · · , x(t, θN )) is a standard Brownian
motion on GP :

E

(
|(x(t, θ1), · · · , x(t, θN ))|2G

)
= tN.

In order to explain our idea of proof, consider first Bθ(t) = x(t,θ)√
αs

, where according to
(3)

α2
s = G(θ, θ) =

∑
n∈Z

1
(1 + n2)s

.

We see that

(12) lim
s→1/2

αs = +∞.

Consider the SDE on G:

dtgx(t, θ) =
√
αs gx(t, θ) ◦ dBθ(t), gx(0, θ) = e.

Then the law of x → gx(t, θ) has the density pαst(g), where pt is the heat kernel on
G. Therefore for any t > 0, as s ↓ 1/2, pαst(g) converges weakly to the normalized Haar
measure dg on G. For the general case, let

U (s) =
1
αs

G(s).

Then as s ↓ 1/2, the matrix U (s) converges to Id. Define

(13) BP(t) =
1√
αs

√
U (s)

−1

⎛⎜⎜⎜⎜⎝
x(t, θ1)

.

.

.
x(t, θN )

)

⎞⎟⎟⎟⎟⎠ ,

where
√
U (s) denotes the square root of U (s). Then by (11), t → BP(t) is a standard

Brownian motion on GP endowed with the direct product metric

(14) E

(
〈BiP (t), BjP(s)〉G

)
= d (t ∧ s)δij ,
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where d is the dimension of G. Set gP(t) = (gx(t, θ1), · · · , gx(t, θN )). Then gP solves the
SDE on GP

dgP(t) =
√
αs gP(t) ◦

√
U (s)dBP(t), gP(0) = (e, · · · , e).

Now consider the SDE on GP

dĝP(t) = ĝP(t) ◦
√
U (s)dBP(t), ĝP(0) = (e, · · · , e).

Then by the above two SDE, the law μ̂
(s)
t of ĝP(t) satisfies the relation

(15) μ
(s)
t = μ̂

(s)
αst.

We know that U (s) induces a left invariant metric on GP . Let μ(s)
∞ be the normalized

Riemannian measure on GP . Then by uniqueness of the Haar measure

(16) μ(s)
∞ = dg1 · · · dgN .

Lemma 4.2. There exists a δ > 0 such that for each f ∈ C(GP)

(17) lim
t→+∞ sup

s∈[ 12 ,
1
2 +δ]

∣∣∣∫
GP

fdμ̂
(s)
t −

∫
GP

fdg1 · · · dgN
∣∣∣ = 0.

Proof. We give first a general look. Let G be a general compact Lie group with the
Lie algebra G. Let {e1, · · · , ed} be a basis of G. Consider the structure equation

[ei, ej] =
d∑
k=1

ckijek.

Let gij = 〈ei, ej〉. Then the Christoffel coefficients are given by

Γqij =
1
2

d∑
k,�=1

gkq
(
c�ijg�,k − c�ikg�j − c�jkg�i

)
where (gkq) is the inverse matrix of (gij). It follows that the Ricci tensor Ric on G

depend continuously of the metric (gij).

Now returning to our situation, denote by RicPs the Ricci tensor on GP associated to
the metric U (s) and RicP associated to the direct product metric. Then as s ↓ 1/2,

(18) RicPs → RicP =
1
4
Id on GP .

Therefore it exists δ > 0 such that RicPs ≥ 1
8 Id for s ∈ [ 12 ,

1
2 + δ]. For the simplicity,

denote by h the Haar measure on GP . Let F ∈ C1(GP ) and any π ∈ C(μ̂(s)
t , h) (see

section 3), we have∫
GP

Fdμ̂
(s)
t −

∫
GP

Fdh =
∫
GP×GP

(
F (x)− F (y)

)
π(dx, dy).

It follows that for constant CF > 0∣∣∣∫
GP

Fdμ̂
(s)
t −

∫
GP

Fdh
∣∣∣ ≤ CF W2(μ̂

(s)
t , h)

which is dominated by
CF e

−t/8W2(δe, h)
due to Theorem 3.1, where e is the unit element of GP . It follows that for any f ∈ C(GP ),

(19) lim
t→+∞ sups∈[ 12 ,

1
2+δ]

∣∣∣∫
GP

fdμ̂
(s)
t −

∫
GP

dh
∣∣∣ = 0.

The proof is complete. �
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We continue the proof of Theorem 4.1. Let f ∈ C(GP ). Then for s0 ∈]12 ,
1
2 + δ] and

according to (15)

∣∣∣∫
GP

fdμ
(s0)
t −

∫
GP

f dg1 · · ·dgN
∣∣∣ =

∣∣∣∫
GP

fdμ̂
(s0)
αs0 t

−
∫
GP

f dg1 · · · dgN
∣∣∣

≤ sups∈[ 12 ,
1
2 +δ]

∣∣∣∫
GP

fdμ̂
(s)
αs0 t

−
∫
GP

dg1 · · · dgN
∣∣∣,

which converges to 0 as s0 → 1/2 due to Lemma 4.2. �
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