SHIZAN FANG

ON THE BEHAVIOUR OF METRICS H_s ON LOOP GROUPS

The heat measures with respect to metric H_s on loop groups were introduced by P. Malliavin; its behaviour as $s \downarrow 1/2$ of finite dimensional distributions was studied by Y. Inahama [J. Funct. Anal., 198 (2003), p. 311-340]. In this note, we shall transfer this problem to the long time behaviour of diffusion processes. We conclude the result by using a metric equivalent form for the lower bound of Ricci tensors.

Let G be a semi-simple compact Lie group and \mathcal{G} its Lie algebra endowed with an Ad_G invariant metric $\langle , \rangle_{\mathcal{G}}$. Let S^1 be the unit circle and denote by $C^{\infty}(S^1, \mathcal{G})$ the space of smooth functions defined on S^1 , taking values in \mathcal{G} . Each $h \in C^{\infty}(S^1, \mathcal{G})$ has the Fourier series expansion

$$h(\theta) = \sum_{n \in \mathbb{Z}} \hat{h}(n) e^{in\theta}, \quad \text{with } \hat{h}(n) = \int_{S^1} h(\theta) e^{-in\theta} \, \frac{d\theta}{2\pi}$$

The metric H_s on $C^{\infty}(S^1, \mathcal{G})$ is defined by

$$|h|_{s}^{2} = \sum_{n \in \mathbb{Z}} (1+n^{2})^{s} |\hat{h}(n)|_{\mathcal{G}}^{2}.$$

Let

$$H_s(\mathcal{G}) = \left\{ h \in L^2(S^1, \mathcal{G}); \ |h|_s < +\infty \right\}.$$

By Sobolev embedding theorem, when s > 1/2, $H_s(\mathcal{G}) \subset C(S^1, \mathcal{G})$. In this case, there is a Gaussian measure μ_s on $C(S^1, \mathcal{G})$ such that $(C(S^1, \mathcal{G}), H_s(\mathcal{G}), \mu_s)$ becomes an abstract Wiener space in the sense of L. Gross [7].

1. Green functions associated to H_s

Let $\{u_n; n \ge 1\}$ be an orthonormal basis of $H_s(\mathbb{R})$ and $\{\varepsilon_1, \cdots, \varepsilon_d\}$ an orthonormal basis of \mathcal{G} . Define

(1)
$$e_{n,\alpha}(\theta) = u_n(\theta)\varepsilon_{\alpha}, \quad n \ge 1, \, \alpha = 1, \cdots, d.$$

Then $\{e_{n,\alpha}; n \ge 1, \alpha = 1, \dots, d\}$ is an orthonormal basis of $H_s(\mathcal{G})$. Let $G^{(s)}(\theta_1, \theta_2)$ be the Green function on S^1 associated to the operator $(1 - \frac{d^2}{d\theta^2})^s$; that is the solution in the distribution sense of

$$(1 - \frac{d^2}{d\theta^2})^s G^{(s)}(\theta_1, \cdot) = \delta_{\theta_1},$$

where δ_{θ_1} is the Dirac mass at θ_1 . We have the relation

(2)
$$G^{(s)}(\theta_1, \theta_2) = \sum_{n \ge 1} u_n(\theta_1) u_n(\theta_2).$$

If we consider

$$u_0 = 1, u_{2n-1}(\theta) = \frac{\sqrt{2} \cos n\theta}{(1+n^2)^{s/2}}, \ u_{2n}(\theta) = \frac{\sqrt{2} \sin n\theta}{(1+n^2)^{s/2}}, \ n \ge 1,$$

²⁰⁰⁰ Mathematics Subject Classification. 60H07, 58D20, 58B20, 60J45.

Key words and phrases. Loop groups, heat measures, metric H_s , Ricci tensor, Wasserstein distance. This work has been benefited from financial support: ANR-09-BLAN-0364-01.

we obtain the following expression (see [9])

(3)
$$G^{(s)}(\theta_1, \theta_2) = \sum_{n \in \mathbb{Z}} \frac{e^{in(\theta_1 - \theta_2)}}{(1 + n^2)^s}.$$

We have

(4)
$$(G^{(s)}(\theta_1, \cdot), u)_s = u(\theta_1) \quad \text{for } u \in H_s.$$

2. BROWNIAN MOTION ON THE LOOP GROUP

Let $\{x_{n,\alpha}; n \geq 1, \alpha = 1, \ldots, d\}$ be a sequence of independent standard real valued Brownian motion, defined on a probability space (Ω, \mathcal{F}, P) . Consider the Random series

(5)
$$x(t,\theta) = \sum_{n,\alpha} x_{n,\alpha}(t) e_{n,\alpha}(\theta).$$

It is known that for s > 1/2, almost surely the series (5) converges uniformly with respect to $(t, \theta) \in [0, 1] \times S^1$. We have the relation, using (2)

(6)
$$\mathbb{E}\Big(\langle x(t,\theta_1),a\rangle_{\mathcal{G}}\langle x(s,\theta_2),b\rangle_{\mathcal{G}}\Big) = (t\wedge s)G(\theta_1,\theta_2)\langle a,b\rangle_{\mathcal{G}}, \quad a,b\in\mathcal{G}.$$

For $\theta \in S^1$ given, following P. Malliavin [10], we consider the SDE on G

(7)
$$d_t g_x(t,\theta) = g_x(t,\theta) \circ d_t x(t,\theta), \quad g_x(0,\theta) = e$$

It has been proved that in [10] and in [2] that $(t, \theta) \to g_x(t, \theta)$ has a continuous version. Then $t \to g_x(t, \cdot)$ is a continuous process taking values in the loop group

$$\mathbb{L}(G) = C(S^1, G).$$

The geometry of $\mathbb{L}(G)$ endowed with the metric H_s was investigated in [6]. For s > 1/2, geometric stochastic analysis was developed in [3, 2, 1, 4, 5, 8, 9], to mention but a few.

3. A geometric result

Let M be a compact smooth Riemannian manifold. Denote by ρ the Riemannian distance and m the normalized Riemannian volume of M. Let Ric be the Ricci tensor on M. There are several equivalent descriptions for the lower bound of Ric. Let $P_t(x, dy)$ be the heat measure on M starting from $x \in M$, then $P_t(x, dy) = p_t(x, y)m(dy)$. For a probability measure μ on M, we define $P_t^* \mu$ by

$$\int_M f \, dP_t^* \mu = \int_M f(y) P_t(x, dy) \, d\mu(x).$$

 μ is said to invariant under P_t if $P_t^* \mu = \mu$. It is known that the Riemannian volume m is the unique invariant measure of P_t . The following result is taken from [11]:

Theorem 3.1. The following properties are equivalent:

(i) Ric $\geq K$, which means that $\langle \text{Ric}_x v, v \rangle_x \geq K |v|_x^2$, where \langle , \rangle_x is the inner product in the tangent space $T_x M$.

(ii) For any probability measures μ, ν on M,

(8)
$$W_2(P_t^*\mu, P_t^*\nu) \le e^{-Kt} W_2(\mu, \nu), \quad t \ge 0$$

where W_2 denotes the Wasserstein distance between two probability measures, which is defined by

(9)
$$W_2^2(\mu,\nu) = \inf\left\{\int_{M \times M} \rho(x,y)^2 \,\pi(dx,dy); \ \pi \in \mathcal{C}(\mu,\nu)\right\}$$

where $C(\mu, \nu)$ denotes the totality of probability measures on the product space having μ and ν as marginal laws.

In particular, taking $\mu = m$ and $\nu = \delta_x$ in (8), we get

(10)
$$W_2(m, P_t(x, dy)) \le e^{-Kt} W_2(m, \delta_x), \quad t \ge 0$$

4. Main result

Fix a partition $\mathcal{P} = \{\theta_1 < \dots < \theta_N\}$ of S^1 . Consider the stochastic process $t \to (g_x(t, \theta_1), \dots, g_x(t, \theta_N))$

on $G^{\mathcal{P}}$. In this note, we will give a new proof to the following result, due to [9].

Theorem 4.1. Let $\mu_t^{(s)}$ be the law of $(g_x(t,\theta_1), \cdots, g_x(t,\theta_N))$ on $G^{\mathcal{P}}$. Then for any t > 0, when $s \downarrow 1/2$, $\mu_t^{(s)}$ converges weakly to the normalized Haar measure $dg_1 \cdots dg_N$ on $G^{\mathcal{P}}$.

Proof. Denote by $\mathbb{G}^{(s)} = (G^{(s)}(\theta_i, \theta_j))_{1 \le i,j \le N}$, which is a positive definite matrix. Let $\mathbb{Q}^{(s)} = (Q_{ij}^{(s)})_{1 \le i,j \le N}$ be the inverse matrix of $\mathbb{G}^{(s)}$. Equipe $\mathcal{G}^{\mathcal{P}}$ with the metric

(11)
$$|a|_{\mathcal{P}}^{2} = \sum_{i,j=1}^{N} Q_{ij}^{(s)} \langle a_{i}, a_{j} \rangle_{\mathcal{G}}, \quad a = (a_{1}, \cdots, a_{N}) \in \mathcal{G}^{\mathcal{P}}.$$

According to (6), under this metric, $t \to (x(t, \theta_1), \cdots, x(t, \theta_N))$ is a standard Brownian motion on $\mathcal{G}^{\mathcal{P}}$:

$$\mathbb{E}\Big(|(x(t,\theta_1),\cdots,x(t,\theta_N))|_{\mathcal{G}}^2\Big)=tN.$$

In order to explain our idea of proof, consider first $B_{\theta}(t) = \frac{x(t,\theta)}{\sqrt{\alpha_s}}$, where according to (3)

$$\alpha_s^2 = G(\theta, \theta) = \sum_{n \in \mathbb{Z}} \frac{1}{(1+n^2)^s}.$$

We see that

(12)

$$\lim_{s \to 1/2} \alpha_s = +\infty.$$

Consider the SDE on G:

$$d_t g_x(t,\theta) = \sqrt{\alpha_s} g_x(t,\theta) \circ dB_\theta(t), \quad g_x(0,\theta) = e$$

Then the law of $x \to g_x(t,\theta)$ has the density $p_{\alpha_s t}(g)$, where p_t is the heat kernel on G. Therefore for any t > 0, as $s \downarrow 1/2$, $p_{\alpha_s t}(g)$ converges weakly to the normalized Haar measure dg on G. For the general case, let

$$U^{(s)} = \frac{1}{\alpha_s} \mathbb{G}^{(s)}.$$

Then as $s \downarrow 1/2$, the matrix $U^{(s)}$ converges to Id. Define

(13)
$$B_{\mathcal{P}}(t) = \frac{1}{\sqrt{\alpha_s}} \sqrt{U^{(s)}}^{-1} \begin{pmatrix} x(t,\theta_1) \\ \vdots \\ \vdots \\ x(t,\theta_N) \end{pmatrix},$$

where $\sqrt{U^{(s)}}$ denotes the square root of $U^{(s)}$. Then by (11), $t \to B_{\mathcal{P}}(t)$ is a standard Brownian motion on $\mathcal{G}^{\mathcal{P}}$ endowed with the direct product metric

(14)
$$\mathbb{E}\Big(\langle B^i_{\mathcal{P}}(t), B^j_{\mathcal{P}}(s)\rangle_{\mathcal{G}}\Big) = d(t \wedge s)\delta_{ij},$$

where d is the dimension of \mathcal{G} . Set $g_{\mathcal{P}}(t) = (g_x(t, \theta_1), \cdots, g_x(t, \theta_N))$. Then $g_{\mathcal{P}}$ solves the SDE on $G^{\mathcal{P}}$

$$dg_{\mathcal{P}}(t) = \sqrt{\alpha_s} g_{\mathcal{P}}(t) \circ \sqrt{U^{(s)}} dB_{\mathcal{P}}(t), \quad g_{\mathcal{P}}(0) = (e, \cdots, e).$$

Now consider the SDE on $G^{\mathcal{P}}$

$$d\hat{g}_{\mathcal{P}}(t) = \hat{g}_{\mathcal{P}}(t) \circ \sqrt{U^{(s)}} dB_{\mathcal{P}}(t), \quad \hat{g}_{\mathcal{P}}(0) = (e, \cdots, e).$$

Then by the above two SDE, the law $\hat{\mu}_t^{(s)}$ of $\hat{g}_{\mathcal{P}}(t)$ satisfies the relation

(15)
$$\mu_t^{(s)} = \hat{\mu}_{\alpha_s t}^{(s)}.$$

We know that $U^{(s)}$ induces a left invariant metric on $G^{\mathcal{P}}$. Let $\mu_{\infty}^{(s)}$ be the normalized Riemannian measure on $G^{\mathcal{P}}$. Then by uniqueness of the Haar measure

(16)
$$\mu_{\infty}^{(s)} = dg_1 \cdots dg_N.$$

Lemma 4.2. There exists a $\delta > 0$ such that for each $f \in C(G^{\mathcal{P}})$

(17)
$$\lim_{t \to +\infty} \sup_{s \in [\frac{1}{2}, \frac{1}{2} + \delta]} \left| \int_{G^{\mathcal{P}}} f d\hat{\mu}_t^{(s)} - \int_{G^{\mathcal{P}}} f dg_1 \cdots dg_N \right| = 0.$$

Proof. We give first a general look. Let G be a general compact Lie group with the Lie algebra \mathcal{G} . Let $\{e_1, \dots, e_d\}$ be a basis of \mathcal{G} . Consider the structure equation

$$e_i, e_j] = \sum_{k=1}^d c_{ij}^k e_k.$$

Let $g_{ij} = \langle e_i, e_j \rangle$. Then the Christoffel coefficients are given by

$$\Gamma_{ij}^{q} = \frac{1}{2} \sum_{k,\ell=1}^{d} g^{kq} \left(c_{ij}^{\ell} g_{\ell,k} - c_{ik}^{\ell} g_{\ell j} - c_{jk}^{\ell} g_{\ell i} \right)$$

where (g^{kq}) is the inverse matrix of (g_{ij}) . It follows that the Ricci tensor Ric on G depend continuously of the metric (g_{ij}) .

Now returning to our situation, denote by $\operatorname{Ric}_s^{\mathcal{P}}$ the Ricci tensor on $\mathcal{G}^{\mathcal{P}}$ associated to the metric $U^{(s)}$ and $\operatorname{Ric}^{\mathcal{P}}$ associated to the direct product metric. Then as $s \downarrow 1/2$,

(18)
$$\operatorname{Ric}_{s}^{\mathcal{P}} \to \operatorname{Ric}^{\mathcal{P}} = \frac{1}{4} \operatorname{Id} \text{ on } \mathcal{G}^{\mathcal{P}}.$$

Therefore it exists $\delta > 0$ such that $\operatorname{Ric}_s^{\mathcal{P}} \geq \frac{1}{8}\operatorname{Id}$ for $s \in [\frac{1}{2}, \frac{1}{2} + \delta]$. For the simplicity, denote by h the Haar measure on $G^{\mathcal{P}}$. Let $F \in C^1(G^{\mathcal{P}})$ and any $\pi \in \mathcal{C}(\hat{\mu}_t^{(s)}, h)$ (see section 3), we have

$$\int_{G^{\mathcal{P}}} F d\hat{\mu}_t^{(s)} - \int_{G^{\mathcal{P}}} F dh = \int_{G^{\mathcal{P}} \times G^{\mathcal{P}}} \left(F(x) - F(y) \right) \pi(dx, dy).$$

It follows that for constant $C_F > 0$

$$\left|\int_{G^{\mathcal{P}}} F d\hat{\mu}_t^{(s)} - \int_{G^{\mathcal{P}}} F dh\right| \le C_F W_2(\hat{\mu}_t^{(s)}, h)$$

which is dominated by

$$C_F e^{-t/8} W_2(\delta_{\mathbf{e}}, h)$$

due to Theorem 3.1, where **e** is the unit element of $G^{\mathcal{P}}$. It follows that for any $f \in C(G^{\mathcal{P}})$,

(19)
$$\lim_{t \to +\infty} \sup_{s \in [\frac{1}{2}, \frac{1}{2} + \delta]} \left| \int_{G^{\mathcal{P}}} f d\hat{\mu}_t^{(s)} - \int_{G^{\mathcal{P}}} dh \right| = 0.$$

The proof is complete.

We continue the proof of Theorem 4.1. Let $f \in C(G^{\mathcal{P}})$. Then for $s_0 \in]\frac{1}{2}, \frac{1}{2} + \delta]$ and according to (15)

$$\begin{split} \left| \int_{G^{\mathcal{P}}} f d\mu_t^{(s_0)} - \int_{G^{\mathcal{P}}} f \, dg_1 \cdots dg_N \right| &= \left| \int_{G^{\mathcal{P}}} f d\hat{\mu}_{\alpha_{s_0}t}^{(s_0)} - \int_{G^{\mathcal{P}}} f \, dg_1 \cdots dg_N \right| \\ &\leq sup_{s \in [\frac{1}{2}, \frac{1}{2} + \delta]} \Big| \int_{G^{\mathcal{P}}} f d\hat{\mu}_{\alpha_{s_0}t}^{(s)} - \int_{G^{\mathcal{P}}} dg_1 \cdots dg_N \Big|, \end{split}$$

which converges to 0 as $s_0 \rightarrow 1/2$ due to Lemma 4.2.

References

- Carson, T.R.: "Logarithmic Sobolev inequalities for free loop groups", Ph.D. thesis, University of California, San Diego, 1997.
- Driver, B.K.: Integration by parts and Quasi-invariance for heat kernel measures on loop groups. J. Funct. Analysis, 149 (1997), 470-547.
- Driver, B.K. and Lohrenz, T.: Logarithmic Sobolev inequalities for pinned loop groups, J. Funct. Anal., 140(1996), 381-448.
- 4. Fang, S.: Integration by parts formula and Logarithmic Sobolev inequality on the path space over loop groups. *Annals of probability*, **27** (1999), 664-683.
- 5. Fang, S. : Metrics \mathcal{H}_s and behaviour as $s \downarrow 1/2$ on loop groups, J. Funct. Anal., 213 (2004), 440-465.
- 6. Freed, S: The geometry of loop groups, J. Differential Geom., 28, (1988), 223-276.
- Gross, L.: Abstract Wiener space, in Proceeding of the fifth Berkeley symposium on Mathematical Statistics and Probability, 1965.
- 8. Inahama, Y.: Logarithmic Sobolev inequality on free loop groups for heat kernel measures associated with the general Sobolev spaces, J. Funct. Anal., **179** (2001), p.170-213.
- Inahama, Y.: Convergence of finite dimensional distributions of heat kernel measures on loop groups. J. Funct. Anal. 198 (2003), 311-340.
- Malliavin, P.: Hypoellipticity in infinite dimension, in "Diffusion processes and related problems in Analysis", vol. I, p. 17-33, Chicago 1989, Birkhaüser 1991 (M. Pinsky ed.)
- Sturm, K.T. and Von Renesse, M.K: Transport inequalities, Gradient estimates, Entropy and Ricci curvature. Comm. Pure Appl. Math., 68 (2005), 923-940.
- I.M.B, BP 47870, Université de Bourgogne, Dijon, France