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WIDED AYED AND HUI-HSIUNG KUO

AN EXTENSION OF THE ITÔ INTEGRAL: TOWARD A GENERAL
THEORY OF STOCHASTIC INTEGRATION

We introduce the class of instantly independent stochastic processes, which serves
as the counterpart of the Itô theory of stochastic integration. This class provides
a new approach to anticipating stochastic integration. The evaluation points for an
adapted stochastic process and an instantly independent stochastic process are taken
to be the left endpoint and the right endpoint, respectively. We present some new
results on Itô’s formula and stochastic differential equations.

1. Introduction

The purpose of this article is to explain the ideas introduced in [1] for an extension
of the Itô integral. A crucial point is the discovery of the counterpart of the Itô theory,
namely, the instantly independent stochastic processes versus the adapted stochastic
processes. We will briefly review the background in Sections 2 and 3. In Section 4 we
will give motivations for our viewpoint, define a new stochastic integral, and present
some new results. In Section 5 we will give new results and examples for Itô’s formula
and stochastic differential equations involving the new stochastic integral. The ultimate
goal is to develop a general theory of stochastic integration.

2. The Itô integral

Let B(t) be a Brownian motion and let {Ft} be a filtration such that
• B(t) is adapted to {Ft},
• B(t)−B(s) and Fs are independent for s ≤ t.

Suppose f(t) is a stochastic process satisfying the following conditions:
(1) f(t) is adapted to {Ft},
(2) E

∫ b
a
|f(t)|2 dt <∞.

Then the Itô integral I =
∫ b
a
f(t) dB(t) is defined (see, e.g., Chapter 4 of the book [13])

and we have the equalities:

E(I) = 0, E(|I|2) = E

∫ b

a

|f(t)|2 dt.

Moreover, we have the next theorem (see, e.g., Theorems 4.6.1 and 4.6.2 in the book
[13].)

Theorem 2.1. Let f(t) be a stochastic process satisfying the above conditions (1) and
(2). Then the stochastic process

Xt =
∫ t

a

f(s) dB(s), a ≤ t ≤ b,

is a continuous martingale.
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More generally, suppose f(t) is a stochastic process satisfying the following conditions:
(a) f(t) is adapted to {Ft},
(b)

∫ b
a |f(t)|2 dt <∞ almost surely.

Then the Itô integral
∫ b
a f(t) dB(t) is defined (see, e.g., Chapter 5 of the book [13]) and

we have the next theorem (see, e.g., Theorems 5.5.2 and 5.5.5 in the book [13].)

Theorem 2.2. Let f(t) be a stochastic process satisfying the above conditions (a) and
(b). Then the stochastic process

Xt =
∫ t

a

f(s) dB(s), a ≤ t ≤ b,

is a continuous local martingale.

3. Anticipating stochastic integrals

From now on we will fix a Brownian motion B(t) and a filtration {Ft} as specified in
Section 1.

3.1. K. Itô’s ideas. Suppose a stochastic process f(t) is not adapted to this filtration.
Then

∫ b
a f(t) dB(t) cannot be defined as an Itô integral. Below are some simple examples

related to this yet to be defined stochastic integral:

1. Stochastic integral:
∫ 1

0
B(1) dB(t) =? (See Equations (1) and (5).)

2. Itô’s formula: θ(B(t), B(1)) =? for 0 ≤ t ≤ 1. (See Theorem 5.1.)
3. SDE: dXt = Xt dB(t), 0 ≤ t ≤ 1, X0 = sgn(B(1)). (See Example 3.8.)
4. SDE: dXt = Xt dB(t) + 1

B(1)Xt dt, 0 ≤ t ≤ 1, X0 = B(1). (See Example 5.1.)

We first describe K. Itô’s ideas to define the stochastic integral
∫ 1

0
B(1) dB(t) in his

lecture at the 1976 Kyoto Symposium on SDE’s [9]. Enlarge the filtration in order for
the integrand B(1) to be adapted, namely, let

Gt = σ{Ft, B(1)}.
Although B(t) is not a Brownian motion with respect to the larger filtration {Gt}, it can
be decomposed as

B(t) =
(
B(t)−

∫ t

0

B(1)−B(u)
1− u du

)
+
∫ t

0

B(1)−B(u)
1− u du,

which shows that B(t) is a quasimartingale with respect to the filtration {Gt}. Then the
stochastic integral

∫ 1

0
B(1) dB(t) can be defined as a stochastic integral with respect to

a quasimartingale and

(1)
∫ 1

0

B(1) dB(t) = B(1)2.

The above ideas of K. Itô inspire us to view anticipating stochastic integration from
a different angle, which will be explained in Section 4.

3.2. Literature. We mention a few papers in the literature on anticipating stochastic
integration. In the early stage there were papers by Hitsuda [7] in 1972, Skorokhod [29]
in 1975, and Burger-Mizel [2] in 1980.

Then there was a period of silence for seven years. Since 1987 there have been many
papers dealing with anticipating stochastic integration. We only mention a few of them
with each one being the first paper published by the author(s) (to our best knowledge).
The list below is obviously very incomplete:
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• Buckdahn [3] (1987), Nualart–Pardoux [19] (1988), Kuo–Russek [15] (1988),
Ocone–Pardoux [22] (1989), Dorogovtsev [5] (1990), Kuo–Potthoff [14] (1990),
Ocone [21] (1990), Pardoux–Protter [24] (1990), Millet–Nualart–Sanz [17] (1991),
Redfern [26] (1991).

• Léon–Protter [16] (1994), Russo–Vallois [27] (1994), Grorud–Nualart–Sanz-Solé
[6] (1994), Øksendal–Zhang [23] (1996), Kohatsu-Higa–Léon [10] (1997), Privault
[25] (1998).

• Shevchenko [28] (2005), Mishura–Shevchenko [18] (2008).

3.3. White noise approach. For the rest of this section we brief describe the white
noise approach to anticipating stochastic integration. For detail, see the book [12].

Let S(R) denote the Schwartz space of rapidly decreasing functions on R and let S′(R)
denote its dual space. Let μ be the standard Gaussian measure on S′(R). Then we have
a Gel’fand triple

S(R) ⊂ L2(R) ⊂ S′(R).
The probability space (S′(R), μ) is often referred to as a white noise space because the
stochastic process defined by

(2) B(t, x) = 〈x, 1[0,t)〉, t ≥ 0, x ∈ S′(R),

is a Brownian motion and informally Ḃ = x for x ∈ S′(R).
Let (L2) = L2(S′(R), μ) and let (S) and (S)∗ denote the spaces of test functions and

generalized functions on S′(R), respectively. Then we have a Gel’fand triple

(S) ⊂ (L2) ⊂ (S)∗.

Example 3.1. Ḃ(t) = 〈·, δt〉 ∈ (S)∗ for each t ∈ R.

Example 3.2. :eḂ(t): =
∑∞

n=0
1
n! 〈: ·⊗n :, δ⊗nt 〉 ∈ (S)∗ for each t ∈ R.

Example 3.3. :e〈·,η〉: =
∑∞
n=0

1
n! 〈: ·⊗n :, η⊗n〉 ∈ (S) if η ∈ Sc(R).

A basic tool in white noise theory is the S-transform defined below. It is used in
characterizing generalized functions and test functions. Moreover, it is also used for
computation on generalized functions.

Definition 3.1. The S-transform of Φ ∈ (S)∗ is defined to be the function

(SΦ)(ξ) = 〈〈Φ, :e〈·,ξ〉:〉〉, ξ ∈ Sc(R).

Example 3.4. S(Ḃ(t))(ξ) = ξ(t), ξ ∈ Sc(R).

Example 3.5. S(:eḂ(t):)(ξ) = eξ(t), ξ ∈ Sc(R).

Example 3.6. S(:e〈·,η〉:)(ξ) = e〈ξ,η〉, ξ ∈ Sc(R).

Definition 3.2. Let ϕ ∈ (S) and y ∈ S′(R). Define the directional derivative Dyϕ by

(Dyϕ)(x) = lim
ε→0

ϕ(x + εy)− ϕ(x)
ε

The operator Dy is a continuous linear operator from (S) into itself. Its adjoint D∗
y is

a continuous linear operator from (S)∗ into itself and for any Φ ∈ (S)∗,

S(D∗
yΦ)(ξ) = 〈y, ξ〉(SΦ)(ξ), ξ ∈ Sc(R).

The white noise differentiation operator ∂t is defined to be the operator ∂t = Dδt . It
is often called Hida–Malliavin derivative in white noise theory and Malliavin calculus.
The white noise Ḃ(t) can be regarded as a continuous linear operator Ḃ(t) = ∂t + ∂∗t
from (S) into (S)∗.
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Suppose f(t) is a measurable function taking values in (S)∗. Then we can use the Pettis
integral to define a white noise integral

∫ b
a ∂

∗
t f(t) dt, which in general is a generalized

function in (S)∗.

Theorem 3.1. (Kubo–Takenaka [11]) If f(t) is adapted and E
∫ b
a
|f(t)|2 dt <∞, then∫ b

a

∂∗t f(t) dt =
∫ b

a

f(t) dB(t),

where the right-hand side is the Itô integral of f(t).

Note that we do not have to assume that f(t) is adapted for the white noise integral∫ b
a ∂

∗
t f(t) dt. Thus in view of Theorem 3.1 the integral

∫ b
a ∂

∗
t f(t) dt provides an extension

of the Itô integral to anticipating stochastic integral. The only thing is that we need to
require that

∫ b
a ∂

∗
t f(t) dt is a random variable instead of just a generalized function in

the space (S)∗.
A theorem due to N. Obata [20] (see also [12]) states that ∪p>1L

p(S′(R), μ) ⊂ (S)∗.
Thus we can make the following definition.

Definition 3.3. A white noise integral
∫ b
a
∂∗t f(t) dt is called a Hitsuda-Skorokhod integral

if it belongs to Lp(S′(R, μ) for some p > 1.

Example 3.7.
∫ 1

0 ∂
∗
tB(1) dt = B(1)2 − 1 is a Hitsuda-Skorokhod integral.

Example 3.8. In 1989 Buckdahn [4] solved the stochastic differential equation

dXt = Xt dB(t), 0 ≤ t ≤ 1, X0 = sgn(B(1)).

The white noise formulation of this equation is given by

dXt = ∂∗tXt dt, 0 ≤ t ≤ 1, X0 = sgn(B(1)).

By using the S-transform, we can derive the same solution

Xt = sgn(B(1)− t) eB(t)− 1
2 t.

See Example 13.30 in the book [12] for the derivation.

Example 3.9. In 1987 Buckdahn [3] solved the stochastic differential equation

dXt = B(1)Xt dB(t), 0 ≤ t ≤ 1, X0 = 1.

The white noise formulation of this equation is given by

dXt = ∂∗t
(
B(1)Xt

)
dt, 0 ≤ t ≤ 1, X0 = 1.

By using the S-transform, we can derive the same solution

Xt = exp
[
B(1)

∫ t

0

e−(t−s) dB(s)− 1
4
B(1)2(1− e−2t)− t

]
.

See Example 13.35 in the book [12] for the derivation.

Example 3.10. In 1990 Kuo–Potthoff [14] solved the stochastic differential equation

dXt = ∂∗t
(
B(1) �Xt

)
dt, 0 ≤ t ≤ 1, X0 = 1,

where � denotes the Wick product. We can use the S-transform to derive the solution

Xt =
1√

1 + t+ t2
exp

[
− 1

2(1 + t+ t2)

(
tB(1)2 − 2(1 + t)B(1)B(t) +B(t)2

)]
.

See Example 13.36 in the book [12] for the derivation, which is rather complicated.

Next we state an extension of Itô’s formula from Theorem 13.19 in the book [12].
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Example 3.11. Here is another example from Example 13.31 of the book [12]:

dXt = ∂∗tXt dt+ sgn(B(1)− t)eB(t)− 1
2 t dt, 0 ≤ t ≤ 1, X0 = 1.

The solution is given by

Xt = eB(t)− 1
2 t
(
1 + t sgn(B(1)− t)).

Theorem 3.2. Let a ≤ t ≤ T and let θ(x, y) be a C2-function such that

θ
(
B(·), B(T )

)
,
∂2θ

∂x2

(
B(·), B(T )

)
,

∂2θ

∂x∂y

(
B(·), B(T )

)
,

are all in L2
(
[a, T ]; (L2)

)
. Then the white noise integral∫ t

a

∂∗s
( ∂θ
∂x

(
B(s), B(T )

))
ds, a ≤ t ≤ T,

is a Hitsuda-Skorokhod integral and the following Itô’s formula

θ
(
B(t), B(T )

)
= θ

(
B(a), B(T )

)
+
∫ t

a

∂∗s
( ∂θ
∂x

(
B(s), B(T )

))
ds

+
∫ t

a

(1
2
∂2θ

∂x2

(
B(s), B(T )

)
+

∂2θ

∂x∂y

(
B(s), B(T )

))
ds.

holds in (L2) for a ≤ t ≤ T .

Here we point out several drawbacks on the white noise approach to anticipating
stochastic integration:

• It requires too much background and the associated Brownian motion B(t, x) in
Equation (2) is too restricted to be adopted to general problems.

• It is difficult to deal with pointwise multiplication of functions, although the
Wick product can be used as a substitution.

• Computation involving the S-transform is usually very complicated, even for
very simple examples.

• There is no available characterization theorem for generalized functions to be
realized as random variables in Lp(S(R), μ) for some p > 1.

• It lacks probabilistic interpretation, e.g., it is unknown as how to deal with
convergence in probability in terms of the S-transform.

4. A new viewpoint for stochastic integral

This section is the main part of this article. We will review the ideas from our previous
paper [1] and present some new results.

4.1. Counterpart of the Itô theory. Recall the stochastic integral
∫ 1

0 B(1) dB(t) in
Equation (2). As explained in Subsection 3.1, Itô’s ideas are as follows:

• Keep the integrand B(1).
• Enlarge the filtration {Ft} and decompose the integrator B(t).

Our new viewpoint in [1] comes from the simple observation that the anticipating
integrand B(1) has the following obvious decomposition

(3) B(1) =
(
B(1)−B(t)

)
+B(t).

Note that the integral for the second term B(t) is within the Itô theory. Thus we only
need to define the stochastic integral

∫ 1

0

(
B(1)−B(t)

)
dB(t). This leads to the question:

“What is so special about the integrand B(1)−B(t)?”
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To find out the answer, consider another anticipating integrand B(1)2. This integrand
can be decomposed as

B(1)2 = [B(1)−B(t)]2 + 2B(t)[B(1)−B(t)] +B(t)2.

Observe that the last term B(t)2 and the factor B(t) in the second term are adapted
stochastic processes, while the first term [B(1)−B(t)]2 and the factor B(1)−B(t) in the
second term have the same property (which is to be defined below) as that of the first
term in Equation (3).

We can also try to decompose integrands such as B(1)n and eB(1) to discover the
common property stated in the next definition.

Definition 4.1. A stochastic process ϕ(t) is said to be instantly independent with respect
to a filtration {Ft} if ϕ(t) and Ft are independent for each t.

Clearly, [B(1)−B(t)]n, eB(1)−B(t), and
∫ 1

t h(s) dB(s) are all instantly independent for
0 ≤ t ≤ 1, where h(s) is a deterministic function in L2([0, 1]).

Lemma 4.1. If a stochastic process ϕ(t) is both adapted and instantly independent with
respect to a filtration {Ft}, then ϕ(t) is a deterministic function.

Proof. Since ϕ(t) is adapted, we have E(ϕ(t)|Ft) = ϕ(t). On the other hand, since ϕ(t)
is instantly independent, we also have E(ϕ(t)|Ft) = E(ϕ(t)). Hence ϕ(t) = E(ϕ(t)),
which shows that ϕ(t) is a deterministic function. �

In view of Lemma 4.1, we can regard the collection of instantly independent stochastic
processes as a counterpart of the Itô theory. Namely, the Itô part consists of adapted
stochastic processes and the counterpart consists of instantly independent stochastic
processes. Moreover, observe from the above discussion that many anticipating stochastic
processes can be decomposed into sums of the products of an Itô part and a counterpart.
Thus our viewpoint in fact stems from Itô’s ideas. We simply reverse the roles of the
integrand and the integrator, i.e.,

• Keep the filtration {Ft} and the Brownian motion B(t).
• Decompose an integrand as a sum of terms, each being the product of an adapted

stochastic process and an instantly independent stochastic processes.

This leads to the question: “How do we define a stochastic integral
∫ b
a
f(t)ϕ(t) dB(t)

for an adapted stochastic process f(t) (in the Itô part) and an instantly independent
stochastic process ϕ(t) (in the counterpart)?” The answer is in the next subsection.

4.2. A new stochastic integral. The second key idea in our approach to anticipating
stochastic integration is the evaluation points for the integrand. Consider the instantly
independent stochastic process B(1)−B(t) in the right-hand side of Equation (3). How
do we “define” the stochastic integral

∫ 1

0
(B(1)−B(t)) dB(t)?

Let Δ = {0 = t0, t1, t2, . . . , tn = 1} be a partition of the interval [0, 1]. On the
subinterval [ti−1, ti], we take the “right endpoint” ti as the evaluation point for the
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integrand B(1)−B(t) to form a Riemann like sum. Then we “define” the integral∫ 1

0

(B(1)−B(t)) dB(t)

= lim
‖Δ‖→0

n∑
i=1

(B(1)−B(ti))(B(ti)−B(ti−1))

= B(1)2 − lim
‖Δ‖→0

n∑
i=1

B(ti)(B(ti)−B(ti−1))

= B(1)2 − lim
‖Δ‖→0

n∑
i=1

{
[B(ti)−B(ti−1)] +B(ti−1)

}
(B(ti)−B(ti−1))

= B(1)2 − 1−
∫ 1

0

B(t) dB(t),(4)

where the last integral is an Itô integral. It follows from Equations (3) and (4) that we
have a new stochastic integral

(5)
∫ 1

0

B(1) dB(t) = B(1)2 − 1,

which is different from the one in Equation (1) defined by K. Itô [9], but the same as the
Hitsuda-Skorokhod integral in Example 3.7. Note that our new stochastic integral has
expectation 0, a property that we want to keep for our new stochastic integral.

The above discussion leads to the following definition of a new stochastic integral of a
stochastic process which is the product of an adapted stochastic process (in the Itô part)
and an instantly independent stochastic process (in the counterpart).

Definition 4.2. For an adapted stochastic process f(t) and an instantly independent
stochastic process ϕ(t), we define the stochastic integral of f(t)ϕ(t) to be the limit∫ b

a

f(t)ϕ(t) dB(t) = lim
‖Δ‖→0

n∑
i=1

f(ti−1)ϕ(ti)(B(ti)−B(ti−1))

provided that the limit in probability exists.

In general, for a stochastic process F (t) =
∑N

n=1 fn(t)ϕn(t) with fn(t)’s being adapted
and ϕn(t)’s instantly independent, we define∫ b

a

F (t) dB(t) =
N∑
n=1

∫ b

a

fn(t)ϕn(t) dB(t).

This stochastic integral is in fact well-defined. Obviously, there is a natural question:
“What is the class of stochastic processes for which the new stochastic integral is defined?”
Unfortunately, we do not have the answer yet.

Example 4.1. We mention two stochastic integrals from the paper [1].∫ t

0

B(1)B(s) dB(s) =

⎧⎨⎩
1
2B(1)(B(t)2 − t)− ∫ t

0
B(s) ds, 0 ≤ t ≤ 1,

1
2B(1)(B(t)2 − t)− ∫ 1

0 B(s) ds, t > 1.

In general, for a continuous function f(x), we have∫ t

0

B(1)f(B(s)) dB(s) =

⎧⎨⎩B(1)
∫ t
0 f(B(s)) dB(s) − ∫ t0 f(B(s)) ds, 0 ≤ t ≤ 1,

B(1)
∫ t
0
f(B(s)) dB(s) − ∫ 1

0
f(B(s)) ds, t > 1.
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Example 4.2. Let f(t) and g(t) be two deterministic functions in L2([0, 1]). Then

(6)
∫ 1

0

g(t)
(∫ 1

0

f(s) dB(s)
)
dB(t) =

∫
[0,1]2

f(s)g(t) dB(s)dB(t),

where the right-hand side is a double Wiener–Itô integral (see Chapter 9 in [13]). To
prove this equality, note that the Wiener integral of f(s) in the left-hand side has the
decomposition ∫ 1

0

f(s) dB(s) =
∫ t

0

f(s) dB(s) +
∫ 1

t

f(s) dB(s),

where the first integral is in the Itô part and the second integral is in the counterpart.
For convenience, let ΔBi = B(ti)−B(ti−1). By Definition 4.2, we have∫ 1

0

g(t)
( ∫ 1

0

f(s) dB(s)
)
dB(t)

= lim
‖Δ‖→0

n∑
i=1

g(ti−1)
( ∫ ti−1

0

f(s) dB(s) +
∫ 1

ti

f(s) dB(s)
)
ΔBi

= lim
‖Δ‖→0

n∑
i=1

g(ti−1)
( ∫ 1

0

f(s) dB(s)−
∫ ti−1

ti

f(s) dB(s)
)
ΔBi

=
∫ 1

0

f(s) dB(s)
∫ 1

0

g(t) dB(t)− lim
‖Δ‖→0

n∑
i=1

f(ti−1)g(ti−1)(ΔBi)2

=
∫ 1

0

f(s) dB(s)
∫ 1

0

g(t) dB(t)−
∫ 1

0

f(t)g(t) dt,

which is exactly the Wiener–Itô double integral in the right-hand side of Equation (6).

In [8] K. Itô proved the following well-known theorem on multiple Wiener–Itô integral
(see also Theorem 9.6.7 in the book [13].)

Theorem 4.1. (K. Itô 1951) Let f ∈ L2([a, b]n) and f̂ its symmetrization. Then∫
[a,b]n

f(t1, t2, . . . , tn) dB(t1)dB(t1) · · · dB(tn)

= n!
∫ b

a

· · ·
∫ tn−2

a

[ ∫ tn−1

a

f̂(t1, . . . , tn−1, tn) dB(tn)
]
dB(tn−1) · · · dB(t1).

Note that the restriction to the region a ≤ tn ≤ tn−1 ≤ · · · ≤ t2 ≤ t1 ≤ b for the
iterated integrals is to ensure that in each step of the iteration the integrand is adapted
so that the integral is defined as an Itô integral.

However, as seen from Example 4.2, there is no need to impose this restriction since
in each step the integral is defined as a stochastic integral in Definition 4.2. By using
the similar arguments as those in Example 4.2, we can prove the next theorem.

Theorem 4.2. Let f ∈ L2([a, b]n). Then∫
[a,b]n

f(t1, t2, . . . , tn) dB(t1)dB(t1) · · · dB(tn)(7)

=
∫ b

a

· · ·
∫ b

a

[ ∫ b

a

f(t1, . . . , tn−1, tn) dB(tn)
]
dB(tn−1) · · · dB(t1).

Observe that we do not have to use the symmetrization f̂ in the right-hand side of
Equation (7). If fact, it is obvious that the iterated new stochastic integrals for f and
f̂ are equal. In view of this theorem a multiple Wiener–Itô integral can be evaluated as
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an iterated stochastic integral, just like multiple integrals and iterated integrals in the
ordinary calculus.

5. Itô’s formula and stochastic differential equations

In the paper [1] we have proved a special case of Itô’s formula for the new stochastic
integral. Here we will prove the formula for a more general case. An interval [a, T ] is
fixed in this section.

Lemma 5.1. Let dXt = h(t) dB(t) + g(t) dt with h ∈ L2([a, T ]) and g ∈ L1([a, T ]). Let
f(x) be a continuous function and ϕ(x) a C1-function. Let θ(x, y) = f(x)ϕ(y−x). Then
for each t ∈ [a, T ], we have

n∑
i=1

θ(Xsi−1 , XT )(Xsi −Xsi−1) −→
∫ t

a

θ(Xs, XT ) dXs +
∫ t

a

∂θ

∂y
(Xs, XT ) (dXs)2

in probability as ‖Δ‖ → 0. Here Δ = {s0, s1, . . . , sn} is a partition of [a, t] with s0 = a
and sn = t. In the second integral, it is understood that (dXs)2 = h(s)2 ds.

Proof. Let ΔBi = B(si)−B(si−1), Δsi = si− si−1, and ΔXi = Xsi −Xsi−1 . Note that
ΔXi ≈ h(si−1)ΔBi + g(si−1)Δti. Then informally we have

n∑
i=1

θ(Xsi−1 , XT )(Xsi −Xsi−1) =
n∑
i=1

f(Xsi−1)ϕ(XT −Xsi−1)ΔXi(8)

≈
n∑
i=1

f(Xsi−1)ϕ(XT −Xsi−1)h(si−1)ΔBi

+
n∑
i=1

f(Xsi−1)ϕ(XT −Xsi−1)g(si−1)Δsi.

For the first summation, we have

n∑
i=1

f(Xsi−1)ϕ(XT −Xsi−1)h(si−1)ΔBi(9)

≈
n∑
i=1

f(Xsi−1)h(si−1)
{
ϕ(XT −Xsi) + ϕ′(XT −Xsi)ΔXi

}
ΔBi

≈
n∑
i=1

f(Xsi−1)h(si−1)
{
ϕ(XT −Xsi) + ϕ′(XT −Xsi)h(tsi−1 )ΔBi

}
ΔBi

→
∫ t

a

θ(Xs, XT )h(s) dB(s) +
∫ t

a

∂θ

∂y
(Xs, XT )h(s)2 ds.

For the second summation in Equation (8), we argue similarly to show that

(10)
n∑
i=1

f(Xsi−1)ϕ(XT −Xsi−1)g(si−1)Δsi −→
∫ t

a

θ(Xs, XT )g(s) ds.

The assertion of the lemma follows from Equations (8), (9), and (10). �

Theorem 5.1. Let dXt = h(t) dB(t) + g(t) dt with h ∈ L2([a, T ]) and g ∈ L1([a, T ]).
Suppose f(x) and ϕ(x) are C2-functions and let θ(x, y) = f(x)ϕ(y − x). Then the
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following equality holds for a ≤ t ≤ T ,

θ(Xt, XT ) = θ(Xa, XT ) +
∫ t

a

∂θ

∂x
(Xs, XT ) dXs

+
∫ t

a

{1
2
∂2θ

∂x2
(Xs, XT ) +

∂2θ

∂x∂y
(Xs, XT )

}
(dXs)2,

where (dXs)2 is understood to be given by (dXs)2 = h(s)2 ds.

Proof. We will derive the equality informally. Let Δ = {s0, s1, . . . , sn} be a partition of
[a, t] with s0 = a and sn = t and let ΔXi = Xsi −Xsi−1 . Then

θ(Xt, XT ) = θ(Xa, XT ) +
n∑
i=1

{
θ(Xsi , XT )− θ(Xsi−1 , XT )

}
≈ θ(Xa, XT ) +

n∑
i=1

∂θ

∂x
(Xsi−1 , XT )ΔXi +

n∑
i=1

1
2
∂2θ

∂x2
(Xsi−1 , XT )(ΔXi)2.

Apply Lemma 5.1 to the function ∂θ
∂x to show that the first summation converges in

probability to ∫ t

a

∂θ

∂x
(Xs, XT ) dXs +

∫ t

a

∂2θ

∂x∂y
(Xs, XT ) (dXs)2.

On the other hand, the second summation converges in probability to∫ t

a

1
2
∂2θ

∂x2
(Xs, XT ) (dXs)2.

Putting these two limits together, we obtain the formula in the theorem. �

Finally we give some examples of stochastic differential equations involving the new
stochastic integral. At the moment we do not have a general theorem. But an interesting
problem to start with is to consider a stochastic differential equation

dXt = f(Xt) dB(t) + g(Xt) dt, 0 ≤ t ≤ T,

with an initial condition that X0 is anticipating, e.g., X0 = B(T ). It is natural to ask
the question, “What is the relationship between the solution of this equation (assuming
that there is a unique solution) and the solution of Itô’s type equation with the initial
condition X0 = x?”

We do not have an answer to this question yet. The next theorem is a special case
relating to the exponential process in the Itô theory.

Theorem 5.2. Let h ∈ L2([0, T ]) and let ξ be a random variable being independent of
the filtration {Ft}. Then the solution of the stochastic differential equation

(11) dXt = h(t)Xt dB(t), 0 ≤ t ≤ T, X0 = ξ +
∫ T

0

h(s) dB(s),

is given by

(12) Xt =
(
ξ +

∫ T

0

h(s) dB(s)−
∫ t

0

h(s)2 ds
)

exp
[ ∫ t

0

h(s) dB(s) − 1
2

∫ t

0

h(s)2 ds
]
.

Proof. To check that the stochastic process Xt defined by Equation (12) is a solution of
the stochastic differential equation (11), just apply the Itô formula in Theorem 5.1 to
the function

θ(t, x, y) =
(
y −

∫ t

0

h(s)2 ds
)

exp
[
x− 1

2

∫ t

0

h(s)2 ds
]
.
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Note that because of the variable t in θ(t, x, y) we need to add an extra term for ∂θ/∂t in
the Itô formula in Theorem 5.1. We omit the computation since it is somewhat tedious,
but nevertheless straightforward.

To prove the uniqueness of a solution, suppose Yt is another solution with the same
initial condition Y0 = X0. Let Zt = Xt − Yt. Then Zt satisfies the stochastic differential
equation

dZt = h(t)Zt dB(t), 0 ≤ t ≤ T, Z0 = 0.
Observe that this equation is within the Itô theory and the solution is given by Zt = 0.
Hence Xt = Yt and the uniqueness of a solution is proved. �

There is another question: “Suppose Xx
t , a ≤ t ≤ T, is the solution of a stochastic

differential equation with Xx
a = x in the Itô theory. Let η be a random variable which

may not be measurable with respect to Fa (e.g., B(T )) and consider the stochastic process
Xη
t . Then what is the stochastic differential equation that is satisfied by Xη

t ?”
Again we do not have an answer to this question yet. Here we only give an example

from our previous paper [1].

Example 5.1. It is well known that the solution of the stochastic differential equation

dXt = Xt dB(t), t ≥ 0, X0 = x,

is given by
Xt = xeB(t)− 1

2 t.

It we change the initial condition to B(1), then we have to get the stochastic process

Yt = B(1)eB(t)− 1
2 t,

which is shown in [1] to be the solution of the stochastic differential equation

dYt = Yt dB(t) +
1

B(1)
Yt dt, 0 ≤ t ≤ 1, Y0 = B(1).
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