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N. M. ZINCHENKO

STRONG INVARIANCE PRINCIPLE FOR A SUPERPOSITION OF
RANDOM PROCESSES

The strong invariance principle (SIP) is proved for a superposition of random proces-
ses S(N(t)) under rather general assumptions on S(t) and N(t). As a consequence,
a number of SIP-type results are obtained for random sums and used to investigate
their rate of growth and fluctuation of increments.

1. Introduction

Starting from the pioneer works due to A. Skorokhod (1961) and W. Strassen (1964,
1965), the strong invariance principle (SIP, the other term – a.s. approximation) for
sums of random variables (r.v.) was rather intensively investigated during more than
four decades.

We use the notion “SIP” as an umbrella name for a wide class of limit theorems which
provide sufficient (or necessary and sufficient) conditions for the possibility to construct
i.r.v. {Xi, i ≥ 1} and a Lévy process {Y (t), t ≥ 1} in such a way that a.s.

|
[t]∑
i=1

Xi −m(t)− Y (t)| = o(r(t)) ∨O(r(t)), (1)

where m(t) is a non-random centering function, and the approximating error r(t) is
also a non-random function depending on assumptions posed on {Xi}. Such additional
assumptions clear up the type of Y (t) and the form of r(.).

The first and most general results dealt with the case of sums of i.i.d.r.v. Numerous in-
vestigations in this area were carried out by a number of authors, among them Kiefer, M.
Csörgő, Révész, Komlós, Major, Tusnady, Berkes, Horváth (quantile Hungarian method),
Stout, Phillip, Berkes (reconstruction method based on a relationship between SIP and
the convergence in the Prokhorov metrics), Horváth (inverse processes); Sakhanenko, Za-
icev (non-identically distributed r.v.). For detailed references, see M. Csörgő, P. Révész
(1981); M. Csörgő, L. Horváth (1993); N. Zinchenko (2000).

The further development was concerned with dependent r.v.: martingales, weakly
dependent r.v. and mixing sequences. Last years, the interest in the SIP for dependent
r.v. is remarkably increased. It is worth to mention the results for associated r.v. and
fields due to Yu (1996), Balan (2005), Wu (2007) and recent fundamental monograph by
Bulinski and Shaskin (2008).

Note that the complete solution of the problem of a.s. approximation depends not only
on the distribution of {Xi, i ≥ 1}, but also on a structure of the probability space, and
(possibly) requires a “richer” probability space and equivalent r.v.{X ′

i , i ≥ 1}. However,
for brevity, we do not distinguish between r.v.{Xi} and {X ′

i}, as well as between their
sums.

We also use the concept of a.s. approximation in a wider sense and say that a
random process ξ(t) admits the a.s. approximation by the random process η(t), if ξ(t)
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(or stochastically equivalent ξ
′
(t)) can be constructed on the rich enough probability

space together with η(t) in such a way that a.s.

|ξ(t)− η(t)| = o(r1(t)) ∨O(r1(t)), (2)

where r1(.) is again a non-random function, and we do not distinguish the notations ξ(t)
and ξ

′
(t).

Our investigation of the SIP for a superposition of random processes was stimulated
by the rather general limit results for inverse and randomly stopped processes in the
Skorokhod D-space due to Csörgő and Horváth (1993), Whitt (2002), Silvestrov (2004),
as well as by various applications in risk and queuing theories and in storage models.

2. Main result

We start with some general result concerning a.s. approximation of the superposition
of the random processes (not obligatory connected with the partial sums).

Let Z∗(t), S∗(t) be two real-valued random processes, and let N∗ be the inverse of
Z∗(t) defined by

N∗(t) = inf{x > 0 : Z∗(x) > t}, 0 ≤ t <∞.
Theorem 2.1. I. Suppose that, for some constants m,λ > 0, and τ > 0, a.s.

sup
0≤t≤T

∣∣τ−1(Z∗(t)− t/λ)−W1(t)
∣∣ = O(r(T )), (3)

where W1(t) is the standard Wiener process, r(t) ↑ ∞, r(t)/t ↓ 0 as t→∞, and

sup
0≤t≤T

∣∣S∗(t)−mt− Yα,β(t)
∣∣ = O(q(T )), (4)

Yα,β(t) being the α-stable process independent of W1(t), |β| ≤ 1, 0 < α < 2, q(t) ↑ ∞,
q(t)/t ↓ 0 as t → ∞. Then one can construct S∗(t) and N∗(t) on the same probability
space in such a way that ∀ε > 0 a.s.

sup
0≤t≤T

∣∣S∗(N∗(t))− (mλ)t− (Yα,β(tλ)− (mλτ)W2(λt))
∣∣ =

= O
(
q(T ) + r(T ) + logT + (r(T ) + (T log logT )1/2)1/(α−ε)

)
, (5)

where W2(t) is a Wiener process independent of Yα,β(t).
II. If S∗(t) also admits a.s. approximation by a Wiener process (instead of the α-stable

process with α < 2), i.e., for some constant σ > 0, a.s.

sup
0≤t≤T

∣∣σ−1(S∗(t)−mt)−W3(t)
∣∣ = O(q(T )), (6)

where W1(t) and W3(t) are independent Wiener processes, and q(t) and r(t) are as above,
then a.s.

sup
0≤t≤T

∣∣S∗(N∗(t))− (mλ)t− νW (t)
∣∣ = O

(
q(T ) + r(T ) + logT

)
, (7)

where W (t) is a standard Wiener process independent of W3(t), ν2 = λσ2 + λ3m2τ2.

The version of this theorem was formulated in [19] with the sketch of the proof; here,
we will establish the detailed proof. Such a proof, as well as various applications of
Theorem 2.1, needs a number of auxiliary results connected with the known SIP for
sums of i.i.d.r.v., renewal and related processes.
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3. Auxiliary results

3.1. SIP for sums of i.i.d.r.v. with finite variance. Let {Xi, i ≥ 1} be i.i.d.r.v
with a common distribution function (d.f.) F (x), characteristic function (ch.f.) f(u),
and EX1 = m, V arX1 = σ2,

S(n) =
n∑
i=1

Xi, S(0) = 0, S(x) = S([x]), [x] − entire of x > 0.

Summarizing all known results in this area, we have, as in [5],

Theorem 3.1. It is possible to define a partial sum process {S(t), t ≥ 0} and a standard
Wiener process {W (t), t ≥ 0} in such a way that a.s.

sup
0≤t≤T

|S(t)−mt− σW (t)| = o(r(T )), (8)

where
r(T ) = T 1/p iff E |X1|p <∞, p > 2 ; r(T ) = (T ln lnT )1/2 iff E |X1|2 <∞ ;
right hand side of (8) is O(lnT ) iff E exp(uX1) <∞ for u ∈ (0, u0).

3.2. SIP for sums of i.i.d.r.v. attracted to the stable law. Suppose that i.i.d.r.v.
{Xi, i ≥ 1} are in a domain of normal attraction of the stable law with 0 < α < 2,
|β| ≤ 1, the notation {Xi, i ≥ 1} ∈ DNA(Gα,β), i.e.

n−1/α
(
S(n)− an

)⇒ Gα,β ,

where an = nEX1 = mn if 1 < α < 2, an = 0 if 0 < α < 1, and an = (2/π)β logn if
α = 1.

Here, Gα,β is d.f. of the stable law with 0 < α < 2, |β| ≤ 1 and ch.f.

gα,β(u) = exp(Kα,β(u)), Kα,β(u) = −|u|(1− iβ(u/|u|)�(u, α)
)
, (9)

where �(u, α) = tan(πα/2) if 0 < α < 2,α �= 1, and �(u, α) = −(2/π) log |u| if α = 1.
Now the approximating process Y (t) = Yα(t) = Yα,β(t), t ≥ 0, is a stable Lévy process

with ch.f. gα,β(t;u) = exp(tKα,β(u)). In this case, SIP was studied by Zinchenko [15];
Berkes, Dehling, Dobrovski, and Philipp [1] with additional
Assumption (C) : there are a1 > 0, a2 > 0 and l > α such that, for |u| < a1,

|f(u)− gα,β(u)| < a2|u|l, (10)

where f(u) is a ch.f. of (X1 − EX1) if 1 < α < 2, and ch.f. of X1 if 0 < α ≤ 1.

Theorem 3.2. ([15]) Put m = EX1 for 1 < α < 2 and m = 0 for 0 < α ≤ 1. Under
assumption (C), a.s.

sup
0≤t≤T

∣∣S([t])−mt− Yα,β(t)
∣∣ = O(T 1/α−ρ0), ρ0 = min

(
l − α
80α

,
2− α
2α

)
. (11)

3.3. SIP for counting (renewal) processes. Suppose that {Zi, i ≥ 1} is another
sequence of i.i.d.r.v. independent of {Xi, i ≥ 1} with d.f. F1(x), ch.f. f1(u) and EZ1 =
1/λ > 0,

Z(n) =
n∑
i=1

Zi, Z(0) = 0, Z(x) = Z([x]),

and define the renewal (counting) process N(t) associated with partial sums Z(n)
as

N(t) = inf{x ≥ 0 : Z(x) > t}.
In the case τ2 = varZ1 < ∞, EZ1 = 1/λ > 0 Csörgő, Horvách, Steinebach, Aalex,
Deheuvels, Mason, and van Zwet (see [5]) studied an a.s. approximation of the type

|λt−N(t)− τλ3/2W (t)| = o(r(t)) ∨O(r(t)) (12)
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and proved that the conditions, which provide (12) and corresponding optimal errors,
are the same as those for S(n), see Theorem 3.1.

The case {Zi, i ≥ 1} ∈ DNA(Gα,β) is covered by the following:

Theorem 3.3. If {Zi} satisfy (C) with 1 < α < 2, then a.s.

sup
0≤t≤T

∣∣λt−N(t)− λ1+1/αYα,β(t)
∣∣ = o(r1(T )), (13)

where r1(T ) is any upper function for the α-stable Levy process.

The proof of this theorem is analogous to the proof of Theorem 1 in [20], where
r1(T ) = T 1/α+δ for any δ > 0 was considered.

3.4. SIP for a general inverse process. Let {Z∗(t), t ≥ 0} be a real-valued stochastic
process. We define its inverse N∗(t) by

N∗(t) = inf{x ≥ 0 : Z∗(x) > t}, 0 ≤ t <∞.
The next theorem [5] established that if {Z∗(t), t ≥ 0} can be a.s. approximated by a
Wiener process, then N∗(t) can be also approximated by another Wiener process.

Theorem 3.4. Assume that, with some positive constants λ and τ,

sup
0≤t≤T

∣∣τ−1(Z∗(t)− t/λ)−W (t)
∣∣ = O(r(T )), (14)

where W (t) is a Wiener process, r(t) ↑ ∞, r(t)/t ↓ 0 as t → ∞. Then we can define a
Wiener process {W ∗(t), t ≥ 0} such that a.s.

sup
0≤t≤T

∣∣(N∗(t)− λt)− (τλ3/2)W (t)
∣∣ = O(r(T ) + log t). (15)

3.5. SIP for dependent r.v. Below, we present two examples of SIP-type results for
dependent r.v.; much more facts can be found in [2],[8],[14].

Proposition 3.1. ([7]) Let {Xi, i ≥ 1} be a stationary Gaussian sequence centered at
expectations. Suppose that, for some ε > 0,

E{X1Xn} = O(n−1−ε), EX2
1 + 2

∑
i≥1

EX1Xi = σ2
1 <∞. (16)

Then there exists a Wiener process {W (t), t ≥ 0} such that a.s.

sup
0≤t≤T

|S(t)− σ1W (t)| = (T 1/2−ϑ), ϑ = min(1, ε)/500. (17)

Definition 3.1. R.v. X1, . . . , Xn are associated, if, for any two coordinate-wise nonde-
creasing functions f, g : Rn → R1,

Cov
(
f(X1, . . . , Xn), g(X1, . . . , Xn)

) ≥ 0

whenever the covariance is defined. A sequence {X,Xi, i ≥ 1} is associated, if every
finite subcollection is associated.

Proposition 3.2. ([20, 2]). Let {Xi, i ≥ 1} be a strictly stationary associated sequence
centered at expectations. Suppose that E|X1|2+δ < ∞ for some δ > 0 and the Cox–
Grimmett coefficient

u(n) = sup
k≥1

∑
j:|j−k|≥n

Cov(XjXk) = O(e−θn) (18)

for some θ > 0. Then there exists a Wiener process {W (t), t ≥ 0} such that, for some
ϑ > 0, a.s.

sup
0≤t≤T

|S(t)− σ1W (t)| = O(T 1/2−ϑ). (19)
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4. Proof of Theorem 2.1.

We carry out the proof of the first part of Theorem 2.1, while the proof of the second
part was presented in [5]. Our approach is based on the ideas of Csörgő and Horvách
who studied the case of the approximation with the help of a Wiener process.

Obviously, we can express

S∗(N∗(t))−mλt = S∗(N∗(t)) −mN∗(t) +m(N∗(t)− λt).

Thus, we have the inequality

Δ(T ) = sup
0≤t≤T

∣∣S∗(N∗(t))−mλt− (Yα(λt) − (mλτ)W2(λt))
∣∣ ≤

≤ sup
0≤t≤T

∣∣S∗(N∗(t))−mN∗(t)− Yα(N∗(t))
∣∣+

+ sup
0≤t≤T

m
∣∣(N∗(t)− λt) + λτW2(λt)

∣∣+ sup
0≤t≤T

∣∣Yα(N∗(t))− Yα(λt)
∣∣

≤ Δ1(T ) +mΔ2(T ) + Δ3(T ). (20)
On the next steps, we estimate each Δi(T ) using conditions (3) and(4), SIP for N∗(t)
from Theorem 3.4, and the growth rate for the stable and Wiener processes.

By (3) and LLN for W (t), we have a.s. lim supt→∞ Z(t)/T = 1/λ, which implies
lim supt→∞N(t)/T = λ, i.e. ∀ε > 0 for large T a.s.

N(T ) ≤ (1 + ε)λT. (21)

Hence, from (4) and (21) ∀ε > 0, a.s.

sup
0≤t≤T

∣∣S∗(N∗(t))−mN∗(t)− Yα(N∗(t))
∣∣ = O

(
q
(
λ(1 + ε)T

))
,

so
Δ1(T ) = O

(
q
(
λ(1 + ε)T

))
.

Now we will demonstrate that q
(
λ(1 + ε)T

)
= O

(
q(T )

)
. Really, if λ(1 + ε) ≥ 1, then

q(T )/T ≥ ((1 + ε)λT )−1q
(
λ(1 + ε)T

)
, and if λ(1 + ε) < 1, then q

(
λ(1 + ε)T

) ≤ q(T ).
Hence,

Δ1(T ) = O
(
q(T )

)
. (22)

Condition (2) and SIP for the inverse process (Theorem 3.4) ensure the possibility to
construct N∗(t) together with the Wiener process W2(t) in such a way that a.s.

sup
0≤t≤T

∣∣(N∗(t)− λt) + λτW2(λt)
∣∣ = O

(
r(T ) + logT

)
. (23)

Thus,
Δ2(T ) = O

(
r(T ) + logT

)
. (24)

The LIL for Wiener process and (23) also yield the existence of such C,C1 > 0 that, for
large T, a.s.

sup
0≤t≤T

∣∣λt−N∗(t))
∣∣ ≤ sup

0≤t≤T

∣∣(N∗(t)− λt) + λτW2(λt)
∣∣+ sup

0≤t≤T
|λτW2(λt)| ≤

≤ C1

(
r(T ) + log t+ (T log logT )1/2

) ≤ C
(
r(T ) + (T log logT )1/2

)
. (25)

Thus, from the fact that ∀ε > 0, a.s.

sup
0≤t≤T

|Yα(t)| = o(T 1/α+ε),

which follows from the integral test for upper/lower functions for the Lévy process [6,
Ch. 4], we obtain a.s.

sup
0≤t≤T

|Yα(N∗(t)− Yα(λt)| = sup
0≤t≤T

|Yα(N∗(t)− λt)| =
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= sup
0≤t≤C(r(T )+(T log log T )1/2)

|Yα(t)| = o
(
(r(T ) + (T log logT )1/2)1/(α−ε)

)
,

i.e.
Δ3 = o

((
r(T ) +

√
T log logT

)1/(α−ε))
. (26)

Combining together (22), (24), and (26), we complete the proof.
The form of Theorem 2 is convenient for the investigation of the random sums

S(N(t)) =
N(t)∑
i=1

Xi,

where N(t) is a renewal process. So, this theorem can serve as a source of numerous SIP-
type limit theorems for the random sums under various assumptions on the dependence
and moment conditions of terms and inter-occurrence intervals.

5. Strong invariance principle for random sums

Let the partial sum processes S(t) and Z(t) be as those in Section 3, let the renewal
process N(t) be the inverse one of Z(t), and D(t) = S(N(t)) =

∑N(t)
i=1 Xi, EZ1 = 1/λ >

0, EX1 = m.
We start with the case where both i.i.d.r.v. {Xi, i ≥ 1} and {Zi, i ≥ 1} have finite

moments of order greater than 2. The following theorem is a straightforward consequence
of Theorem 2.1; the corresponding r(t) and q(t) are obtained from Theorem 3.1 and (12).

Theorem 5.1. ([5]) Let varX1 = σ2 < ∞, τ2 = varZ1 < ∞. The mentioned r.v. can
be constructed on the same probability space together with the Wiener process W (t) in
such a way that a.s.

sup
0≤t≤T

|S(N(t))− λmt− νW (t)| = o(r3(T )), ν2 = λσ2 + λ3m2τ2, (27)

where
(i) r3(T ) = T 1/p, p = min{p1, p2}, if E|X1|p1 < ∞, E|Z1|p2 < ∞, p1 > 2, p2 > 2;
(ii) r3(T ) = (T ln lnT )1/2, if p = 2; (iii) the right-hand side of (13) is O(ln T ), if
E exp(uX1) <∞ and E exp(uZ1) <∞ for all u ∈ (0, uo).

In the case {Xi, i ≥ 1} ∈ DNGα,β and satisfy (C), by Theorem 3.2, q(t) = t1/α−�1 ,
�1 > 0, and the worst estimate for r(t) is (t log log t)1/2. These facts lead to

Theorem 5.2. ([20]) Let {Xi, i ≥ 1} satisfy (C) with 1 < α < 2, and EZ2
1 <∞. Then

a.s.
sup

0≤t≤T

∣∣S(N(t))−mλt− Yα,β(λt)
∣∣ = o(T 1/α−�1), �1 = �1(α, l) > 0. (28)

Corollary 5.1. Theorems 5.1 and 5.2 hold if N(t) is a homogeneous Poisson process
with intensity λ, corresponding ν2 = λEX2

1 .

For Poisson sums with dependent terms, it is easy to derive

Corollary 5.2. Statement (27) holds with r3(t) = (T 1/2−ϑ), ϑ > 0, if the terms {Xi, i ≥
1} constitute a stationary Gaussian sequence, whose covariance satisfies (16), or a strictly
stationary associated sequence with covariance satisfying Proposition 3.2.

The approach analogous to the proof of Theorem 2.1. provides

Theorem 5.3. Let {Xi, i ≥ 1} satisfy (C) with 1 < α1 < 2, |β1| ≤ 1 and {Zi} satisfy
(C) with 1 < α2 < 2, α1 < α2, then a.s.

sup
0≤t≤T

∣∣D(t)−mλt− Yα1,β1(λt)
∣∣ = o(T 1/α1−�2) for some �2 = �2(α1, l) > 0.
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6. The rate of growth of random sums and their increments

In this section, we demonstrate the possible way of application of the SIP: using the
SIP with an appropriate error term, one can transfer, almost without the proof, the
results on the asymptotic behavior of the Wiener or stable processes on the rate of
growth of random sums D(t) = S(N(t)) and their increments.

Theorem 6.1. (Classical LIL for random sums). Let {Xi, i ≥ 1} and {Zi, i ≥ 1}
be independent sequences of i.i.d.r.v. with EX1 = m < ∞, 0 < EZ1 = 1/λ < ∞,
σ2 = V arX1 <∞, τ2 = V arZ1 <∞. Then a.s.

lim sup
t→∞

|D(t)−mλt|√
2t ln ln t

= ν, ν2 = λσ2 + λ3m2τ2.

Remark 6.1. Analogous LIL holds also for stationary sequences satisfying Corollary 5.2.

When the terms {Xi, i ≥ 1} are attracted to the asymmetric stable law Gα,−1, we
have

Theorem 6.2. Let {Xi, i ≥ 1} satisfy (C) with 1 < α1 < 2, β1 = −1, and {Zi, i ≥ 1}
satisfy (C) with α2 ∈ (α1, 2), |β2| ≤ 1, or EZ2

1 <∞, EX1 = m <∞, 0 < EZ1 = 1/λ <
∞. Then a.s.

lim sup
t→∞

D(t)−mλt
t1/α1(B−1

1 ln ln t)1/θ1
= λ1/α1 , (29)

B1 = (α1 − 1)α−θ1
1 | cos(πα1/2)|1/(α1−1), θ1 = α1/(α1 − 1). (30)

The proof follows from Theorems 5.2 and 5.3 and LIL for an asymmetric stable process
[5], [17].

Corollary 6.1. Theorems 6.1 and 6.2 are true when N(t) is a homogeneous Poisson
process.

Next, we study the magnitude of increments D(T +aT )−D(T ). When both {Xi} and
{Zi} have finite variance, the centered process D(t)−mλt can be a.s. approximated by a
Wiener process W (t) with an appropriate error term, whose form depends on additional
moment conditions. This gives a possibility to extend the Erdös–Rényi–Csörgő–Révész
results [4, 5, 7] for W (T + aT )−W (T ) on the asymptotics of D(T + aT )−D(T ). Notice
that the additional assumptions which determine the form of the approximation term
have impact on the length of intervals aT which appear in the next theorems.

Theorem 6.3. Let {Xi, i ≥ 1} and {Zi, i ≥ 1} be the independent sequences of i.i.d.r.v.,
EX1 = m, varX1 = σ2, EZ1 = 1/λ > 0, varZ1 = τ2,

E exp(uX1) <∞, E exp(uZ1) <∞, (31)

as |u| < u0, u0 > 0, the function aT , T ≥ 0, satisfies the following conditions: 0 < aT <
T, and T/aT does not decrease in T . In addition,

aT / lnT →∞ as T →∞. (32)

Then a.s.

lim sup
T→∞

|D(T + aT )−D(T )−mλaT |
γ(T )

= ν, (33)

where
ν2 = λσ2 + λ3m2τ2, γ(T ) = {2aT (ln lnT + lnT/aT )}1/2.

Theorem 6.4. Let {Xi, i ≥ 1}, {Zi, i ≥ 1} and aT satisfy all conditions of the previous
Theorem with the following assumption used instead of (31):

EXp1
1 <∞, p1 > 2, EZp21 <∞, p2 > 2.

Then (33) is true if aT > c1T
2/p/ lnT for some c1 > 0, p = min{p1, p2}.
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When {Xi, i ≥ 1} are attracted to an asymmetric stable law, Theorems 5.2 and 5.3
and a variant of the Erdös–Rényi–Csörgő–Révész-type law for the α-stable Lévy process
without positive jumps [17] yield

Theorem 6.5. Suppose that {Xi, i ≥ 1} and {Zi, i ≥ 1} satisfy the conditions of Theo-
rem 6.2. The function aT is non-decreasing, 0 < aT < T , T/aT is also non-decreasing
and provides dT−1T 1/α−�2 → 0 for certain �2 > 0 determined by the error term in SIP.
Then a.s.

lim sup
T→∞

D(T + aT )−D(T )−mλaT
dT

= λ1/α1 , (34)

where the normalizing function

dT = a
1/α1
T {B−1

1 (ln lnT + lnT/aT )}1/θ1
and B1, θ1 are defined by (30).

Now consider the classical risk process U(t) = u+ ct−∑N(t)
i=1 Xi, where u ≥ 0 denotes

the initial capital; c > 0 stands for the premium income rate; i.i.d.r.v {Xi, i ≥ 1} are
interpreted as claim sizes; the Poisson process N(t) stands for the number of claims until
time t. In such a model, D(t) = S(N(t)) is interpreted as the total claim amount process,
and the above results can be used to investigate its growth rate [19].

In the case of small claims (with finite exponential moments) or large claims (but with
finite moments of order p > 2) for large t, we can a.s. indicate upper/lower bounds for
the growth of total claim amounts D(t) as mλt± ν√2t ln ln t and for the reserve capital
U(t) as u+ tρmλ± ν√2t ln ln t, where ρ = (c− λm)/λm > 0 is a safety loading.

For very large claims in a domain of normal attraction of the asymmetric stable law
Gα,1 with 1 < α < 2, β = 1 (for instance, a Pareto-type r.v. with corresponding
1 < α < 2), Theorem 6.2 for large t yields the a.s. upper bound for the risk process

U(t) ≤ u+ ρmλt+ (1 + ε)λ1/αt1/α(B−1 ln ln t)1/θ, ∀ε > 0.
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