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ON STOCHASTIC AVERAGING AND MIXING

The text contains a review and new results on stochastic averaging via mixing bounds.

1. Introduction

The advanced technique of averaging was proposed in celestial mechanics in [45]. The
idea is that when the planets turn around the Sun, their motion may be approximately
calculated using classical mechanics for each planet as a two bodies problem, i.e. this
planet and the Sun, without taking into account the other planets. Then, the next step
should be to incorporate the other planet into the analysis, by means of asymptotic
series. In the first approximation, this means that the action of the other planets should
be replaced by some effective change in the coefficients of the equations over the period
of rotation. Further deterministic aspects were developed by many researchers, including
N. N. Bogoliubov with his collaborators, see, e.g., [5]; see also [2], [44], et al. However,
the goal of this review is a stochastic aspect.

Later on, a stochastic version of the theory emerged. This theory is applicable to a wide
range of systems with randomness and with “slow” and “fast” components which are often
called “action” and “angle” variables, due to physical reasons. The idea of the method
is to replace coefficients of the slow part of the system by certain “effective” or averaged
ones, which would not depend on the fast variable any more. This is a useful simplification
that often plays a crucial role, especially in applications. Nowadays, stochastic systems
with averaging may be found not only in mechanics, but also in many areas of physics,
chemistry, mathematical biology, weather modelling, mathematical statistics, financial
mathematics, et al., see [58], [7], [16], [21], [8], [51], [19], etc.; some other works will
be mentioned below, but, clearly, this list is quite difficult to make complete. Hence,
the authors aspirations are only perhaps to attract attention though to some less known
sources.

Although it is usually impossible to find the “first word” or the first author, it seems
very likely that the idea of stochastic averaging was proposed as a hypothesis by N. N. Bo-
goliubov. Technically – and perhaps a bit artificially – the area of stochastic averaging
may be split into two large directions, (1◦) a kind of functional law of large numbers
(which may be further split into results of convergence in probability vs. weak conver-
gence), and (2◦) a kind of functional central limit theorem, the latter often being called
diffusion approximation. Further directions include, in particular, large and moderate
deviations, however, we do not touch them here only mentioning the pioneering works
[20], [21], and some further development in [68]–[69], [26] (for discrete time systems),
[18], [22], [23], [50], [71]– [73], [38], et al.

The first named direction started with a seminal paper [29] and was further advanced
in [21, ch.7], [66], [26], [13], [12], et al. In [66] stochastic averaging principle has been
established for a wide class of SDE systems with non-smooth drift coefficients; both types
of convergence in probability and weak convergence have been treated. In [12] an answer
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has been given to the question in which situation convergence is in probability (strong):
earlier it was noticed in several sources that if diffusion coefficient does not depend on
fast component, convergence may be often established only in probability. The results
from [12] are stronger: they state that if the averaged SDE has a pathwise unique strong
solution, then convergence is in probability. The background for such result is the paper
[28] about approximation methods for strong solutions of SDEs and theorems about
pathwise uniqueness. About diffusion approximation see [20], [8], [57], [21, ch.7], [17],
[7], [3], [26], [56]; close results in PDEs may be found in [4], [31], [43], [52]. Quite often
(see [57], [17], [56]) such results relate to solving Poisson equations “in the whole space”.
About this side of the theory see also [31], [51], [52], [41], et al.

In all papers on stochastic averaging, some quantitative ergodic properties were used.
Often those ergodic properties are realised as mixing bounds. Hence, the second part
of this work concerns some new results on mixing bounds for a new class of stochastic
differential equations that are genuinely highly degenerate. Simultaneously, some new
weak existence and uniqueness results are established. We leave some comments to this
part till the corresponding sections, in order not to overload this introduction.

Hence, the paper consists of two parts, about averaging for two-scaled processes and
about (new) mixing. Notice that practically any new mixing bound for a new class of
processes can be immediately used so as to get new averaging results. We do not pursue
this goal here only because of an already large volume of the text. The first part of the
paper – section 2 – is a review of some basic ideas of averaging for stochastic processes,
with results of three sorts: of functional Law of Large Numbers (LLN) type, of diffusion
approximation (= functional CLT) type, and of large deviations. In the second part of
the paper – section 3 – we establish new weak existence for a degenerate SDE system
with non-smooth drift, uniqueness in distribution for this system, local mixing (local
Dobrushin’s condition), and finally exponential mixing bounds.

2. Stochastic averaging

2.1. Averaging inequalities. Consider an SDE system with a small parameter ε > 0,

dXε
t = b(Xε

t , Y
ε
t ) dt+ σ(Xε

t , Y
ε
t ) dWt, X0 = x,

(1)

dY εt = ε−1B(Xε
t , Y

ε
t ) dt+ ε−1/2C(Xε

t , Y
ε
t ) dW̃t, Y0 = y.

Formally, is not really very important whether the same or different Wiener processes
drive the equations for both components X and Y . Often it is assumed that the two
Wiener Processes are different and independent; however, in some works they are assumed
equal. All this may be included into a general scheme by choosing suitable dimensions
of the matrices σ and C, although some degeneracy issues would arise. We will assume
W and W̃ independent.

The idea of stochastic averaging of LLN type is based on a simple method, which has
at the same time some strength and certain weakness. Firstly, the slow component is to
be frozen, and the fast motion becomes an (ergodic) Markov process with a quantitative
convergence rate to its invariant regime; the slow component is then replaced by a Markov
process with coefficients “averaged” with respect to that invariant measure (diffusion is
averaged as σσ∗). Secondly, the difference has to be estimated. It should be said that
there exist critical opinions that claim that the method is very rough and hardly can be
optimal. However, currently there is no real alternative to this technique, although it is
not impossible that such alternative might be introduced in some future.

According to [21], the following standing inequality may be used to justify the proce-
dure: it is assumed that there exists a function b̄ such that the following two inequalities
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hold true,

(2) sup
t,x,y

Ex,y

∣∣∣∣∣ 1T
∫ t+T

t

b(x, yx,ys ) ds− b̄(x)
∣∣∣∣∣ ≤ κ(T ),

and

(3) sup
t,x,y

Ex,y

∣∣∣∣∣ 1T
∫ t+T

t

σσ∗(x, yx,ys ) ds− ā(x)
∣∣∣∣∣ ≤ κ(T ),

with κ(T ) → 0, T → ∞, possibly with a certain specified rate. Here yx,yt denotes the
solution of the SDE

(4) dyt = B(x, yt) dt+ C(x, yt) dW̃t, Y0 = y.

Hence, the question arises about how to verify existence of κ satisfying (2)–(3) for par-
ticular classes of processes. In fact, the assumption (2)–(3) in its original form turns out
to be rather restrictive: practically, it can be checked only for SDEs with the component
Y on a compact manifold, but not in R� as in (1). That is to say that, in fact, the
condition (2)–(3) is, indeed, rather restrictive for the systems in Rd+�, which does not
look compact, except for a periodic case with respect to the second component y, which
makes the state space of Y equivalent to the (compact) torus. Perhaps, other compact-
ifications may be also possible, yet, in general, the system in Rd+� certainly cannot be
reduced to the compact case. Does it mean that for really non-compact spaces/cases
there is no averaging? The answer is that certainly there is averaging, just (2)–(3) ought
to be replaced by some suitable weaker version, for example, as suggested in [66], by

(5) sup
t,x,y

Ex,y

∣∣∣∣∣ 1T
∫ t+T

t

b(x, yx,ys ) ds− b̄(x)
∣∣∣∣∣ ≤ κ(T )(1 + |x|2 + |y|2),

along with another complementary assumption,

(6) sup
t,x,y

Ex,y(1 + |yx,yt |2) ≤ C(1 + |x|2 + |y|2).

Some variations are allowed here, e.g., other increasing functions instead of squares in
the right hand side of the inequality (5) would do as well, including some exponentials,
however, the growth rate ought to be controlled by an appropriately changed “adjoint”
condition (6). We do not go into details here. The point is that the inequalities (5)–(6)
are quite realistic and may be easily verified for a wide class of SDEs in R�. For certain
particular classes of processes, under assumptions on coefficients conditions of the type
(5 – 6) are checked in [26], et al. In turn, those sufficient conditions are based on mixing
rate bounds, as shown, e.g., in [26]. Methods of how to check mixing bounds for Markov
diffusions have been developed in [62], [65], [63], [74], [39], [40], et al. In most of the
sources on mixing for SDEs it is assumed that diffusion coefficient is nondegenerate.
Some exception is [60], where instead some hypoellipticity condition is used; however,
this is also some kind of nondegeneracy, and requires a good smoothness. In this paper
we propose a new method to study mixing rates suitable for highly degenerate SDEs
without smoothness. This is reasonable in all mechanical systems, because if we treat
solution of an SDE as a position of some particle, then the only appropriate place where
nondegenerate random noise may show up is apparently forces. This leads quite naturally
to systems of the following type,

Ẋ = Y, Ẏ = “random forces”,

where the first component X may have no white noise term (cf. [9]) by virtue of “physical
reasons”.
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2.2. About diffusion approximation. The problems of invariance principle kind (=
functional central limit theorem type results) were studied firstly for a compact state
space for the “fast” component in [57]. Even a bit earlier, similar results in terms of
partial differential equations have been established in [4]. Later the theory was developed
in [31], [17], [7], [53], [41], et al. In many papers on the subject starting from [57] the
role of Poisson equations “in the whole space” has been emphasized, see, e.g., [17].

A general non-compact and “fully–coupled” (i.e. with all coefficients that depend on
all components) case

dX = b(Xt, Yt)dt+ ε−1/2f(Xt, Yt)dt+ σ(Xt, Yt)dWt, X0 = x,

(7)

dY = ε−1B(X,Y ) dt+ ε−1/2C(X,Y ) dW̃t, Y0 = y.

has been considered in [56] via Poisson equations. The latter were investigated in this
series of papers with the help of quantitative mixing bounds developed earlier in [74]
et al. A different approach for Lipschitz coefficients was earlier developed in [7] (to
be precise, for discrete time, but this is not very important). Another version of fully
coupled equations has been treated in [3] with a motivation from mathematical models
of weather. The whole direction of diffusion approximation theory is not yet completed,
although basic problems seem to have been solved. We do not go into details here, but
just mention that the diffusion approximation theorem from [21] does not use directly
Poisson equation. The latter is a hint that although the Poisson equation in the whole
space is, indeed, a very powerful tool, nevertheless, in some interesting situations it may
be avoided, or possibly it could even not applicable, while some other more probabilistic
approaches may still work.

3. Degenerate case: new mixing bounds

In this section we study a 2D process that plays the role of the process (yx,yt , t ≥ 0) as
in (4), slightly abusing the notations accepted in the Section 2: now the first component
of our 2D process is X and the second Y , but X is not averaged.

In a series of papers by F. Campillo et al. [9], [10], [11] the following system of SDEs
in R2 has been investigated for recurrence, invariant measure, approximation, etc.,

dXt = Yt dt, X0 = x,

(8)
dYt = b(Xt, Yt) dt+ dWt, Y0 = y,

where W is a standard Wiener process, and drift b is a Borel measurable function satis-
fying a linear growth condition and having a special form,

(9) b(x, y) = −u(x, y)y − β x− γ sign(y),

where β and γ are some positive constants, and u satisfies (see the Assumption (A1)
below) 0 < u1 ≤ u(·) ≤ u2 < ∞. The system describes a mechanical “semi–active”
suspension device in a vehicle under external stochastic perturbation forces treated as
a white noise, which, in fact, attracted much attention; we do not extend the list of
references so as to cite only what is necessary for our presentation here. So, in particular,
all positiveness conditions above have some clear physical nature. The term with γ
corresponds to friction, β is a spring coefficient, uY corresponds to damping (control
related to the velocity of the device), and the function u here stands for tuning of this
damping control. Under certain assumptions, existence of a (unique) invariant measure
has been proved [9]; as we show below, those assumptions may be relaxed. On the other
hand, the question of rate of convergence to stationary regime remained completely open.
We will show exponential bound on rate of convergence towards the stationary measure
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in the distance of total variation for the system (8)–(9), and a similar exponential bound
of beta-mixing, under rather weak assumptions on the coefficients. The approach is based
on recurrence and local mixing. The method of establishing local mixing proposed below
is applicable to the equation (8), and should be suitable for a wider class of processes, in
particular, not necessarily 2D. The method of establishing global mixing rate, as well as
convergence to stationary regime, does not use “small sets” nor strong Feller property:
perhaps the latter may hold true, however, due to the lack of smoothness of the drift it
should not be elementary to show that.

The first question about the system (8) may be regarded as unexpected: we ought to
revise existence and uniqueness questions. Why unexpected? Just because the golden
period of this topic was in 60s-70s. However, motivated by the setting from [11], one
may notice that it is not reasonable to assume any smoothness of the drift in the second
component. The matter is that this drift may admit some control, and it is well known
that optimal strategies are usually discontinues; hence, no smoothness on he drift will
be assumed in the sequel. In such a case, the most traditional technique to establish
(weak) existence, starting from the works [58], [46], [47] does not work. Indeed, [58]
requires continuity of coefficients, while [47] requires nondegeneracy of diffusion; and we
have neither assumed. Hence, we will apply another well known although less frequent
approach based on Girsanov’s transformation of measure [27]. Notice a similarity between
the methods in the next section and in [75]: the latter is also based on Girsanov’s formula
and also provides weak solutions for certain class of degenerate SDE of (8) type. However,
the method below is different and covers another class of equations, although there is a
non-trivial intersection.

3.1. Weak existence and uniqueness. Since we are going to apply Girsanov’s tech-
nique [27], we could get only weak solutions. (This does not mean, of course, that
strong solution is not possible for some example or class of examples; but it should follow
from some complementary analysis.) The same relates to uniqueness: we are going to
check weak uniqueness, i.e. uniqueness in distribution. In fact, for non-degenerate SDE
systems it was noticed by Girsanov himself in the last comment of his seminal paper
(without proof), and it was realised later in [6] and [15], that linear growth of the drift
suffices to establish martingale property of a stochastic exponential, and, hence, justify
Girsanov’s method. Remind that [27] recommended to work with bounded drifts; in case
of unbounded, recommendation was to stop or truncate. Nevertheless, the results from
[6] and [15] (see [33] for a more modern presentation) were very useful. However, they
are not sufficient for the system (8), due to the evident degeneracy. They would suffice
under the condition

(10) sup
x
|b(x, y)| ≤ C(1 + |y|), ∀ y,

but this inequality is more restrictive than what is assumed, following [10], [11]. Remind
that the assumptions in [11] were based on engineering meanings of all terms of the
equations. The assumption (10) is unreasonable due to physical nature of the equation.

It may be said more. Since the paper [64], it is known that any SDE in a finite-
dimensional Euclidean space with a unit diffusion matrix and linear growth condition on
a (Borel measurable) drift has a pathwise unique strong solution. Thus, weak existence
result from [6] for such SDEs is redundant since about year 1980: it is fully covered by
strong existence from [64]; it is actually also covered by weak existence from [46] and
[47]. However, for the system (8)–(9) there is no result on strong solutions except for
under rather special restrictions in [9]; we do not assume those restrictions here.

We formulate two assumptions, (A1) will be used for existence and uniqueness, and
(A2) for estimating rate of mixing.
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Assumptions for (8)

(A1) The function b in (8) is Borel measurable, and there exists C such that

|b(x, y)| ≤ C(1 + |x|+ |y|).
(A2) The function u in (9) is Borel measurable, and there exist constants 0 < u1 ≤

u2 <∞ such that u1 ≤ u ≤ u2; β and γ are strictly positive constants.

In the sequel, μx,yt denotes the marginal distribution of (Xt, Yt), the couple with the
initial state (x, y), and μ∞ stands for its (unique) invariant distribution if the latter
exists.

Theorem 1. Let the system (8) satisfy (A1). Then the equation (8) has a (weak)
solution; this solution is unique in distribution and it is a strong Markov process.

Proof. First of all let us show that there exists a weak solution of the system (8),
and that it possesses a weak uniqueness property. Emphasize that (9) is not assumed in
this section. Basically, there are two methods available: one based on approximations;
and another based on Girsanov’s transformations. In the general case, if we want to
use approximations and weak convergence, then we do have a good a priori bound, –
e.g., for the second moment, – but the function u may be discontinuous, in particular,
in variable x, while the component X has no diffusion term at all. This is an obstacle
while using approximations and passing to a limiting measure. So, we will work with
Grisanov’s transformations. We start with a couple (X, W̃ ) on some probability space
(Ω,F , P̃ ), where W̃ is a Wiener process, and Xt = x +

∫ t
0 W̃s ds. In other words, the

process (X, W̃ ) solves the system (8) in the trivial case b ≡ 0. We will use Girsanov’s
exponential to solve a general case. Let

ρ̃T := exp

(∫ T

0

(
b(Xt, y + W̃t) dW̃t −1

2

∫ T

0

∣∣∣b(Xt, y + W̃t)
∣∣∣2 dt) .

The existence part of the Theorem will be proved if we show that this is a probability
density, i.e., that Ẽρ̃T = 1. It is convenient to formulate the statement as a lemma.

Lemma 1. Under the assumption (A1), there exists T > 0 small enough, such that for
every R > 0,

(11) sup
(x,y)∈BR

Ẽx,yρ̃
2
T <∞.

Moreover, for every (x, y) ∈ BR and every T > 0 (not only small),

(12) Ẽx,yρ̃T = 1.

Emphasize that the value of the left hand side in (11) may depend on R, however, the
value T can be chosen so that it suits all values R > 0.

Proof of Lemma 1. Notice that the assertion (11) guarantees uniform integrability of
ρ̃T with respect to the measure P̃ , for every (x, y) ∈ BR, which implies (12) for small
values of T . However, the latter equality is extended on any T by simple induction based
on Markov property (remind that small T in (11) does not depend on initial data),
see [6] or [33, Corollary 3.5.14]. Hence, it suffices to prove only (11). We estimate,
using Cauchy–Bouniakovsky–Schwarz’ inequality (known widely as Cauchy–Schwarz’ or
Cauchy’s),
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(
Ẽx,yρ̃

2
T

)2

≤
(
Ẽ exp

(
−4

∫ T

0

b(x+
∫ t

0

W̃s ds, y + W̃t) dW̃t

−8
∫ T

0

∣∣∣∣b(x+
∫ t

0

W̃s ds, y + W̃t)
∣∣∣∣2 dt

))

×Ẽ exp

(
+6

∫ T

0

∣∣∣∣b(x+
∫ t

0

W̃s ds, y + W̃t)
∣∣∣∣2 dt

)

≤ Ẽ exp

(
+6

∫ T

0

∣∣∣∣b(x+
∫ t

0

W̃s ds, y + W̃t)
∣∣∣∣2 dt

)

≤ Ẽ exp

(∫ T

0

C

(
1 + (x+

∫ t

0

W̃s ds)2 + (y + W̃t)2
)
dt

)

≤ Ẽ exp

(∫ T

0

(
C(1 + |x|2 + |y|2) + C(

∫ t

0

W̃s ds)2 dt+ C(Wt)2
)
dt

)

≤ C(T,R, x, y) Ẽ exp
(
C(T + T 3) sup

0≤t≤T
|W̃t|2

)

= C(T,R, x, y) Ẽ exp
(
C (T 2 + T 4) sup

0≤t≤1
|W̃t|2

)
.

Since, due to the André reflection principle, for any v > 0,

P̃ ( sup
0≤t≤1

|W̃t| > v) ≤ 4P̃ (W̃1 > v) ≤ 4
v

exp(−v2/2),

it is, indeed, easy to see that with any constant β, the latter expectation is finite if T > 0
is chosen small enough. The Lemma 1 is proved. In particular, we have (weak) existence
for the system (8–9).

Now, to show (weak) uniqueness, we suppose that the couple (X,Y ) solves the system
(8) under the assumption (A1). Let

ρT := exp

(
−
∫ T

0

(b(Xt, Yt) dWt −1
2

∫ T

0

|b(Xt, Yt)|2 dt
)
.

In the sequel, the index T in ρT = ρ may be dropped if T is already fixed. The statement
about weak uniqueness – and strong Markov property – is convenient to formulate as a
proposition.

Proposition 1. Under the assumption (A1), weak solution of the system (8) on [0,∞) is
unique in distribution. Any solution on any probability space is a strong Markov process.
Also, for any T > 0,

(13) E ρT = 1.

Proof of Proposition 1. We already know that given x, y, for any T , weak existence
follows straight away from Girsanov’s transformation due to the Lemma 1. Let us show
that for any T , weak uniqueness (= uniqueness in law) follows from the same Girsanov
transformation. Indeed, if there is a solution of (1), we can apply the inverse Girsanov
transformation and using the standard localization procedure along with Fatou’s lemma,
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we get (13) by the Lemma 1. Hence, the distribution of (X,Y ) on [0, T ] can be obtained
from the distribution of (X̃, Ỹ ) with Ỹ − y = W̃ (P̃–Wiener process), by means of the
Girsanov transformation ρ̃T . So, this distribution is, indeed, unique on [0, T ]. This kind
of argumentation about using Girsanov’s transformation in order to prove uniqueness
in law can be found, in particular, in [25], and here we present it only for the reader’s
convenience. For a slightly different reasoning see [33].

Strong Markov property follows from [48], due to weak uniqueness. The proof of the
Proposition 1 is completed. The Theorem 1 is also proved.

In the sequel we will use the following close assertion.

Lemma 2. Under the assumption (A1), there exists T > 0 small enough, such that for
every R > 0,

(14) sup
(x,y)∈BR

Eρx,yρT <∞.

Proof of Lemma 2. Notice that since Eρx,yρT = Eρ2
T , the assertion (14) guarantees

uniform integrability of ρT with respect to the measure P , for every (x, y) ∈ BR, which,
by the way, again implies the Proposition 1, at least, for T > 0 small enough. The
inequality (14) can be rewritten as

sup
(x,y)∈BR

Eρx,yρT = sup
(x,y)∈BR

Ẽx,y(ρ̃T )−1 <∞.

In this form, it follows from the calculus quite similar to that in the proof of the Lemma
1. The Lemma 2 is proved.
Remark 3. Both weak existence and martingale property of Girsanov’s exponential
can be easily extended to a multidimensional case where both Xt ∈ Rd and Yt ∈ Rd,
with just minor changes in the calculus; different dimensions for the components are also
possible.
Remark 4. The result from [6] about Girsanov’s transformation relates to the following
SDE in Rd with a d-dimensional Wiener process (we use another notation Zt for the
process, to distinguish it from the setting (8)),

(15) dZt = b(t, Zt) dt+ dWt, Z0 = z.

In this Remark, drift b is a d-dimensional Borel measurable vector–function, and it
satisfies a linear growth condition with some constant L > 0,

(16) |b(t, z)| ≤ L (1 + |z|), ∀ z ∈ Rd.
The following result is some combination of the Lemma 0 (sic: zero, the original statement
number in [6]) with the Theorem 1 and the discussion around them from [6], and the
Lemma 7 from [27], slightly reformulated. As usual (e.g., as above in the Lemma 1),
to solve (15), we consider a probability space (Ω,F , P̃ ) with a (another) Wiener process
W̃t, t ≥ 0.

Proposition 2 (Benes 1971). Under (16), for any T ,

ẼζT = 1, ζT := exp(−
∫ T

0

b(s, W̃s) dW̃s − 1
2

∫ T

0

|b(s, W̃s)|2 ds),

the process Wt := W̃t −
∫ t
0 b(s, W̃s) ds, 0 ≤ t ≤ T , is d-dimensional Wiener under the

new measure dP ≡ dP̃ ζ := ζT dP̃ , and, hence, the equation (15) has a weak solution
unique in the sense of distribution.
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Nowadays, it may be easier to consult a later presentation, see [33, Corollary 3.5.16,
Proposition 5.3.6], for example. The reader may wish to check himself whether or not
this Proposition 2 is applicable directly to (8), or, at least, to (8) with the restriction
(9); the authors believe that it is not.

Remark 5. The assumption (16) is essentially used in the proof of this result in [6]. It
may be of interest to notice the last remark in the paper by Girsanov [27], actually related
to more general processes with a variable diffusion, which (the remark) in the case of
constant diffusion reduces precisely to (16). The author did not prove the claim promising
to do it later, which apparently never occurred. Perhaps, it may be partially explained
by the fact that even without that remark Girsanov’s method did allow applications if
used with appropriate stopping or/and truncations.

Notice also that in [9], Girsanov’s transformation was actually used to remove only
the u(Xt, Yt)Yt part of the drift, although this does not affect our comments. Despite all
arguments above, the authors are still inclined to think that all results of this section are
possibly just a re-discovery of something well-known, and they keep this section until a
proper reference on some earlier paper(s) is advised to us by the readers.

Remark 6. Notice that non-Markov SDEs may be considered quite similarly, which
would generalize weak existence for equations with delay from [15]; similarly to [6], the
latter paper mainly deals with control problems.

3.2. Local mixing via local Dobrushin’s condition. In this subsection we are going
to establish local mixing condition which we call local Dobrushin’s. The name is because
Dobrushin used global condition of this sort in his studies of central limit theorem for
Markov processes. Of course, the same condition appears in the standard (Kolmogorov’s)
form of ergodic theorem for Markov chains, so – as usual – the question of who was the
first to suggest this type of condition for studying mixing is unclear. Vasserstein [59]
was apparently the first to use it in a global form for his version of coupling which we
apply below. However, remind that the expression in the left hand side of the condition
(17) below in the case BR = BR′ = Rd is called Dobrushin’s ergodic coefficient in the
literature. In any case, we are going to verify that for any R large enough and some
R′ > R and for some suitable T > 0,

(17) inf
(x0,y0),(x1,y1)∈BR

∫
BR′

(
μT ;x0,y0(dx dy)
μT ;x1,y1(dx dy)

∧ 1
)
μT ;x1,y1(dx dy) =: κR,R′ > 0.

Here notation is used,

μT ;x0,y0(dx dy) := Px0,y0(XT ∈ dx, YT ∈ dy).
The density of one measure with respect to another is understood in the usual way,
that is, as a density of the absolute continuous component. Also we notice that the
notation used κR,R′ does not mean at all that the left hand side in (17) does not depend
on anything but R,R′. It may well depend on other parameters, however, for the time
being, what is important is the choice of R and R′; so all other parameters – which can
be easily recovered – are dropped from this notation.

The assumption (17) is strictly weaker than small sets condition that is often used in
such situations, apparently, (17) provides a better constant in the final bound, and also
this condition is satisfied for a wider class of processes. There is one more reason: despite
a bit cumbersome outlook, the condition (17) is actually often easier to verify. The next
result is the second part of the method for establishing mixing used in this paper and
our main contribution to the technique of verification of mixing rate here. We consider
any solution to the equation (8), without the restriction (9).
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Lemma 3. Let (A1) be satisfied. Then for any R > 0 and R′ ≥ R there exists c > 0
such that (17) holds true.

Proof. It suffices to consider the case R′ = R here. First of all, notice that

(18)
μT ;x0,y0(dx dy)

dx dy
> 0, a.s.

Indeed, by virtue of Girsanov’s transformation (cf., e.g., the Proposition 1 above), under
the measure P ρ we have a representation,

ρT = exp

(
−
∫ T

0

b(x0 +
∫ t

0

W̃s ds, y0 + W̃t) dW̃t

−1
2

∫ T

0

∣∣∣∣b(x0 +
∫ t

0

W̃s ds, y0 + W̃t)
∣∣∣∣2 dt

)
.

Denote

μρT ;x0,y0
(dx dy) := Eρx0,y01(XT ∈ dx, YT ∈ dy).

We have,

μT ;x0,y0(dx dy)
dx dy

=
μρT ;x0,y0

(dx dy)
dx dy

Ex0,y0(ρ
−1
T | XT = x, YT = y),

where both multiples μρT ;x0,y0
(dx dy)/dx dy and E(ρ−1

T | XT = x, YT = y) are positive
(a.s. for the second one). For the second this is because 0 < ρ−1 <∞ a.s. For the first
one there is an explicit representation of a lower bound of this density, see (19) below.
So, (17) can be rewritten equivalently as

inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
μT ;x0,y0(dx dy)
μT ;x1,y1(dx dy)

∧ 1
)
μT ;x1,y1(dx dy)

= inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
μT ;x0,y0(dx dy)

dx dy
∧ μT ;x1,y1(dx dy)

dx dy

)
dx dy ≥ c > 0.

Let L > 0 and consider the densities,

μT ;x0,y0(dx dy)
dx dy

:=
Ex0,y01(XT ∈ dx, YT ∈ dy)

dx dy
,

μLT ;x0,y0
(dx dy)

dx dy
:=

Ex0,y01(XT ∈ dx, YT ∈ dy) 1(ρT > L)
dx dy

.

Clearly, the measure μLT ;x,y(dx dy) is absolutely continuous with respect to the Lebesgue
measure dxdy, similarly to μx,y(dx dy). Moreover, ρT is a probability density (see the
Proposition 1). So, we can use the following notations,

μT ;x0,y0(dx dy)
dx dy

≡ Eρx0,y0ρ
−11(XT ∈ dx, YT ∈ dy)

dx dy
=: px0,y0(x, y;T ),

μρT ;x0,y0
(dx dy)

dx dy
≡ Eρx0,y01(XT ∈ dx, YT ∈ dy)

dx dy
=: pρx0,y0(x, y;T ),

μLT ;x0,y0
(dx dy)

dx dy
=
Eρx0,y01(XT ∈ dx, YT ∈ dy) 1(ρT > L)

dx dy
=: pLx0,y0(x, y;T ).
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We estimate,

μT ;x0,y0(dx dy)
dx dy

=
Eρx0,y0ρ

−1
T 1(XT ∈ dx, YT ∈ dy) 1(ρT ≤ L)

dx dy

+
Eρx0,y0ρ

−1
T 1(XT ∈ dx, YT ∈ dy) 1(ρT > L)

dx dy

≥ L−1
Eρx0,y01(XT ∈ dx, YT ∈ dy) (1− 1(ρT > L))

dx dy

≥ L−1

(
Eρx0,y01(XT ∈ dx, YT ∈ dy)

dx dy
− Eρx0,y01(XT ∈ dx, YT ∈ dy) 1(ρT > L)

dx dy

)
.

Here ρ is a probability density on Ω. So, the first term up to the multiple L−1 is a
positive density of the two-dimensional Gaussian vector(

X

W̃

)
∼ N

((
x
y

)
, CT

)
, CT =

(
T 3/3 T 2/2
T 2/2 T

)
,

under the probability measure P ρ. In other words,

pρx0,y0(x, y;T ) =
√

12
2πT 2

exp
(
−1

2
(x− x, y − y)(C−1

T )(x − x, y − y)∗
)
,

and

px0,y0(x, y;T ) ≥ L−1
(
pρx0,y0(x, y;T )− pLx0,y0(x, y;T )

)
.(19)

In particular, the main term in the lower bound of the density pT is uniformly bounded
from below on any compact. We estimate,

inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
μT ;x0,y0(dx dy)
μT ;x1,y1(dx dy)

∧ 1
)
μT ;x1,y1(dx dy)

= inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
μT ;x0,y0(dx dy)

dx dy
∧ μT ;x1,y1(dx dy)

dx dy

)
dx dy

≡ inf
(x0,y0),(x1,y1)∈BR

∫
BR

(px0,y0(x, y;T ) ∧ px1,y1(x, y;T )) dx dy

≥ inf
(x0,y0),(x1,y1)∈BR

∫
BR

L−1
(
pρx0,y0(x, y;T ) ∧ pρx1,y1(x, y;T )

−pLx0,y0(x, y;T )− pLx1,y1(x, y;T )
)
dx dy

≥ L−1

(
inf

(x,y),(x′,y′)∈BR

pρx,y(x
′, y′;T ) |BR| − 2 sup

(x,y)∈BR

P ρx,y(ρT > L)

)
.

We used the elementary inequality,

(20) (a− b) ∧ (c− d) ≥ (a ∧ c)− b− d.
Next, clearly,

inf
(x,y),(x′,y′)∈BR

pρx,y(x
′, y′;T ) |BR| = π R2 inf

(x,y),(x′,y′)∈BR

pρx,y(x
′, y′;T ) > 0,
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and this value does not depend on L. The second term admits the following bound due
to Bienaimé–Chebyshev (it would do with any power),

sup
(x0,y0)∈BR

P ρx0,y0(ρT ≥ L) ≤ L−1 sup
(x0,y0)∈BR

Eρx0,y0ρT .

Hence, in order to complete the proof of the Lemma, it suffices to notice that

(21) sup
(x0,y0)∈BR

Eρx0,y0ρT <∞,

at least, for T > 0 small enough. Indeed, the inequality (21) has been established in the
Lemma 2 above. The Lemma 3 is proved.

Remark 9. Let us emphasize once more again that the calculus above does not guarantee
local boundedness of the transition density p (unlike pρ). Hence, an applicability of small
sets condition remains an open question, not speaking of its optimality.

The Lemma 3 could be very helpful on its own. However, in this paper it will be more
convenient to use some modification of this statement. Let us start our process (X,Y )
at (x0, y0) ∈ BR, and consider the exit measure νR

′
x0,y0(·) of this process from the cylinder

QTR′ := {(t, x, y) : t ≤ T, |(x, y)| ≤ R′}, R′ ≥ R,

that is, for any measurable set A on the boundary ∂QTR′ ,

νR
′

x0,y0(A) := Ex0,y01
(
(Xτ(QT

R′), Yτ(QT
R′)) ∈ A

)
,

where τ(QTR′) := inf(t ≥ 0 : (Xt, Yt �∈ QTR′). This exit measure is concentrated on
the parabolic boundary of QTR′ . Clearly, if R′ → ∞ – with R fixed – then the mass of
the measure νR

′
x0,y0 on the boundary where t < T tends to zero uniformly with respect

to (x0, y0) ∈ BR. Indeed, this follows, for example, from continuity of trajectories.
Moreover, on the part of the boundary where t = T , for any A ∈ B(R2),

νR
′

x0,y0((T, x, y) : (x, y) ∈ A) ↑ μT ;x0,y0(A), R′ ↑ ∞.
Due to the domination νR

′
x0,y0({T } ×A) ≤ μT ;x0,y0(A), the measure νR

′
T ;x0,y0

(·) :=
νR

′
x0,y0({T }× ·) has a density with respect to μT ;x0,y0 and, hence, also with respect to the

Lebesgue measure on R2. Let us denote the latter

qR
′

x0,y0(dxdy) :=
νR

′
T ;x0,y0

(dxdy)
dxdy

.

Consider the following modified local Dobrushin’s condition, with R′ ≥ R,

(22) inf
(x0,y0),(x1,y1)∈BR

∫
BR′

(
νR

′
T ;x0,y0

(dz)
νR

′
T ;x1,y1

(dz)
∧ 1

)
νR

′
T ;x1,y1(dz) > 0.

Because of existence of densities with respect to the Lebesgue measure, it is possible to
rewrite the latter equivalently as

(23) inf
(x0,y0),(x1,y1)∈BR

∫
BR′

(
dνR

′
T ;x0,y0

dΛ
∧ dνR

′
T ;x1,y1

dΛ

)
dΛ ≥ c > 0,

where Λ denotes the Lebesgue measure on R2. This modified condition suits the goal of
constructing coupling for two processes better than the condition (17).

Lemma 4. Let (A1) be satisfied. Then for any R > 0 there exist R′ ≥ R and c > 0 such
that (23) holds true.
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Proof. We have, with any (x0, y0), (x1, y1) ∈ BR and using the same elementary hint
(20) as in the previous Lemma,∫

BR′

(
dνR

′
T ;x0,y0

dΛ
∧ dνR

′
T ;x1,y1

dΛ

)
dΛ ≡

∫
BR′

(
qR

′
x0,y0(x, y;T ) ∧ qR′

x1,y1(x, y;T )
)
dx dy

≡
∫
BR′

(px0,y0(x, y;T ) ∧ px1,y1(x, y;T )) dx dy

−
∫
BR′

(
(px0,y0(x, y;T )− qR′

x0,y0(x, y;T )) + (px1,y1(x, y;T )− qR′
x1,y1(x, y;T ))

)
dx dy.

In the right hand side, the first term is greater than κR,R′ (see (17)) due to the Lemma
3, while ∫

BR′

(
(px0,y0(x, y;T )− qR′

x0,y0(x, y;T ))
)
dx dy

= Px0,y0((XT , YT ) ∈ BR′ ; sup
0≤t≤T

|(Xt, Yt)| ≥ R′)

≤ sup
(x0,y0)∈BR

Px0,y0( sup
0≤t≤T

|(Xt, Yt)| ≥ R′)→ 0, R′ →∞.

Hence, the Lemma 4 is proved.

3.3. Lyapunov functions and hitting time bounds. The main ideas of this section
are due to [9]-[11]; however, our presentation contains some further news adjusted so as
to serve establishing mixing bounds.

Lemma 5. Let the assumptions (A1)–(A2) be satisfied. Then for the system (8–9) there
exists a constant C > 0 such that

sup
t≥0

Ex,y(|Xt|2 + |Yt|2) ≤ C(1 + |x|2 + |y|2).

Proof follows from [9], with the Lyapunov function suggested there,

f(x, y) = βx2 + εxy + y2,

where ε > 0 is small enough. Let us remind the main line, entirely for the reader’s
convenience. Let gx,y(t) ≡ g(t) := Ex,yf(Xt, Yt); from general martingale inequalities it
easily follows that this function is locally bounded. There exists ε0 > 0 such that for any
ε0 > ε > 0

f(x, y) ≥ 1
2
(βx2 + y2),

and, of course,
f(x, y) ≤ C (x2 + y2).

Hence it suffices to show that g(t) ≤ C(1 + |x|2 + |y|2) for any t ≥ 0 with some C > 0.
Naturally, g(0) = f(x, y) ≤ C(1 + |x|2 + |y|2). Applying Itô’s formula, we find that there
exist positive constants ε and δ such that

(24)
d

dt
g(t) ≤ −C(ε, δ)g(t) +

ε

2δ
+ σ2,

where C(ε, δ) > 0. From here it follows that

(25) g(t) ≤ g(0) exp(−C(ε, δ)t) + (
ε

2δ
+ σ2)C(ε, δ)−1.

Clearly, the arguments above may require some localization procedure which is quite
standard. The Lemma 5 is proved.
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Corollary 1. There exists a stationary distribution μ∞ with the property∫
(x2 + y2)μ∞(dx dy) <∞.

The proof follows from the Lemma 5 as in [9], for example.

Lemma 6. Let (A1)–(A2) be satisfied, and R be large enough. Then for the system
(8–9) there exist C,α > 0 such that

Ex,y exp(ατ) ≤ C(1 + f(x, y)),

The proof of Lemma 6 follows easily from the standing inequality above (24), similarly
to the calculus in [74] or [62].

We will need a similar technical inequality for a process in a double–dimension state
space. Namely, we consider another independent copy (X̄t, Ȳt, t ≥ 0) of the process
(Xt, Yt, t ≥ 0), possibly with another initial condition. Let Zt = (Xt, Yt), Z̄t = (X̄T , Ȳt).

Lemma 7. Let (A1)–(A2) be satisfied, and R be large enough. Then for the system
(8–9) there exist C,α > 0 such that

Ez,z′ exp(αγ) ≤ C (1 + f(z) + f(z′)),

where γ is defined as follows,

γ := inf(t ≥ 0 : |Zt| ∨ |Z̄t| ≤ R).

The proof follows similarly from the Lyapunov inequality above (24), cf. [74] or [62].
Remark 8. Such inequalities are frequently needed in techniques which use coupling.
They usually do follow from a similar analysis as without space-doubling. However, it is
a bit unclear whether such assertions may follow, say, from the Lemma 6 automatically,
i.e. without a new calculus.

3.4. Mixing rate bounds. Next step is mixing and convergennce rate to the stationary
regime. Remind the definition of beta-mixing coefficient,

(26) βx,yt := sup
s≥0

Ex,y sup
B∈B2

(Px,y((Xt+s, Yt+s) ∈ B)− Px,y((Xt+s, Yt+s) ∈ B | FX,Ys )),

where (x, y) is the initial condition for the equation. The coefficient βx,yt dominates the
(non-stationary) alpha-mixing coefficient introduced (in the stationary form) by Rosen-
blatt, and the latter is widely used for establishing all kinds of limit theorems. Hence,
naturally, βx,yt is also suitable for this goal. The stationary version of the coefficient βt is
widely known as Kolmogorov’s coefficient (for the first time it appeared in the joint work
by his students Volkonskii and Rosanov). The non-stationary version of beta-coefficient
for Markov processes (26) was investigated, in particular, in a series of papers by the
second author. The approach consists of two parts, recurrency – e.g., via Lyapunov
functions – and “local mixing condition”. Both issues have been studied in the previous
sections, and now we can turn to our second main goal, i.e. beta-mixing bounds.
In the sequel, μx,yt denotes the marginal distribution of (Xt, Yt), the couple with the
initial state (x, y), and μ∞ stands for its (unique) invariant distribution if the latter
exists.

Theorem 2. Let the system (8) satisfy (A1) and (A2). Then there exists a unique
probability distribution μ∞ which does not depend on initial data (x, y), and there exist
C, c > 0 such that

(27) ‖μx,yt − μ∞‖TV ≤ C exp(−ct)(1 + x2 + y2), t ≥ 0,

and also

(28) βx,yt ≤ C exp(−ct)(1 + x2 + y2), t ≥ 0.
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Proof. The plan is to use the Lemmas 7 and 4 and the calculus from [74], with a natural
replacement of polynomial inequalities by exponential ones.
1. Consider a couple of independent processes Zt = (Xt, Yt), t ≥ 0, and Z̃t = (X̃t, Ỹt),
t ≥ 0, where (Xt, Yt) is a solution of the (8), while Z̃t now is a stationary version of
the Markov process with the same generator and with a finite seond moment (see the
Corollary 1). On the direct product of those two probability spaces, construct a sequence
of stopping time, following [29],

τ̂1 = inf(t ≥ 0 : |Zt| ∨ |Z̃t| ≤ R),

and for all n ≥ 1,

Tn = inf(t ≥ τ̂n : |Zt| ≥ R′, or |Z̃t| ≥ R′) ∧ (τ̂n + 1),

τ̂n+1 = inf(t ≥ Tn : |Zt| ∨ |Z̃t| ≤ R).

2. Using the coupling method as in [63], due to the Lemma 4, we can construct a new
process Z̄. (a copy of Z.) and a stopping time L ≥ 0 on some extended probability space,
so that

(29) Pz,Z̃0
(Z̄t = Zt , t ≤ L− 1) = Pz,Z̃0

(Z̄t = Z̃t, t ≥ L) = 1.

Here z = (x, y), while Z̃0 has a stationary distribution, Pz,Z̃0
means conditional proba-

bility given Z̃0 and Z0 = z; Pz stands for probability given only Z0 = z. It follows from
the implementation of the coupling method as in [61] that there exists q ≤ 1−κR,R′ such
that

(30) Pz,Z̃0
(L > τ̂n) ≤ qn, ∀n.

Naturally, we choose here R,R′ so that κR,R′ > 0, which is possible due to the Lemma
4. We have, ∀C ∈ B(R2),

|Pz(Zt ∈ C)− P (Z̃t ∈ C)| = |Pz(Z̄t ∈ C)−
∫
Pz̃(Z̃t ∈ C)μ∞(dz̃)|

(31)

= |
∫ (

Pz(Z̄t ∈ C)− Pz̃(Z̃t ∈ C)
)
μ∞(dz̃)| ≤ Ez Pz,Z̃0

(L ≥ t).

So,

||μx,yt − μ∞||TV := 2 sup
C

(μx,yt (C)− μ∞(C)) ≤ 2EzPz,Z̃0
(L ≥ t).

3. Now, with a−1 + b−1 = 1, a, b > 1, by Rogers – Hölder’s inequality (known usually
as Hölder’s), the following holds:

Pz,Z̃0
(L > t) =

∞∑
n=0

Ez,Z̃0
1(L > t)1(τ̂n ≤ t < τ̂n+1)

≤
∑
n≥0

Pz,Z̃0
(L > τ̂n)1/aPz,Z̃0

(τ̂n+1 > t)1/b ≤
∑
n≥0

qn/aPz,Z̃0
(τ̂n+1 > t)1/b.

By Bienaimé–Chebyshev, the Lemmae 5 and 7, and by induction,

Pz,Z̃0
(τ̂n+1 > t) ≤ e−αtEz,Z̃0

eατ̂n+1

= e−αtEz,Z̃0
eα(τ̂1+

�n
k=1(τ̂k+1−τ̂k)) ≤ e−αtCnR C(1 + |x|2 + |y|2 + |X̃0|2 + |Ỹ0|2).



126 N. ABOURASHCHI AND A. YU. VERETENNIKOV

Hence, given the initial values X0 and Y0 for the process Zt, we get

Pz,Z̃0
(L > t) ≤ (1 + |x|2 + |y|2 + |X̃0|2 + |Ỹ0|2) exp(−αb−1t)

×
∑
n≥0

exp(−n(a−1 ln q−1 − b−1 lnCR)).

By choosing a, b, so that a−1 ln q−1 − b−1 ln(CR) > 0, which is possible due to

lim
b→∞

b−1 ln(CR) = 0, and lim
a→1

a−1 ln q−1 = ln q−1 > 0,

we get here in the right hand side a convergent series and, hence, due to the Corollary
1, the required bound (27) follows after integration over X̃0 and Ỹ0.

4. Beta-mixing is established similarly (see, for example, [74]), and we drop the details.
The Theorem 2 is proved.

Remark 8. Hence, some part of analysis in [9] et al. concerning invariant measures
for systems (8)–(9) can be accomplished by the exponential rate of convergence. More
than that, clearly, this conclusion may be extended on a wider class of equations, but we
will not pursue it here. It is interesting to notice that we have achieved even a bit more
than promised: in the right hand side of the bound (27) we may actually have a multiple
(1 + |x|2 + |y|2)1/b with some b > 1, rather than (1 + |x|2 + |y|2). The last assertion is a
trivial consequence of the Theorem 2 – by integration – and it returns the reader to the
standing assumption needed for averaging from the Section 2.

Corollary 2. Let function (f(x, y), x, y ∈ R1) be Borel and bounded and let the process
Zt = (Xt, Yt) satisfy (8)–(9). Then there exists C > 0 such that for any x, y and any
T > 0,

sup
t,x,y

Ex,y

∣∣∣∣∣ 1T
∫ t+T

t

f(Xs, Ys) ds−
∫
f(x′, y′)μ∞(dx′dy′)

∣∣∣∣∣
(32)

≤ C‖f‖B ×min
(

1 + |x|2 + |y|2
T

, 1
)
.

This is a way to establish (5) with κ(T ) ≤ C ‖f‖B T−1, because (32) is a special form
of the former, while the Lemma 5 provides (6). Remind that the couple (X,Y ) here
plays the role of the component (yx,yt , t ≥ 0) in (5)–(6).
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