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YA. V. TSAREGORODTSEV

ASYMPTOTIC NORMALITY OF ELEMENT-WISE WEIGHTED
TOTAL LEAST SQUARES ESTIMATOR IN A MULTIVARIATE
ERRORS-IN-VARIABLES MODEL

A multivariable measurement error model AX = B is considered. Here A and B are
input and output matrices of measurements and X is a rectangular matrix of fixed
size to be estimated. The errors in [A, B| are row-wise independent, but within each
row the errors may be correlated. Some of the columns are observed without errors
and the error covariance matrices may differ from row to row. The total covariance
structure of the errors is known up to a scalar factor. The fully weighted total least
squares estimator of X is studied. We give conditions for asymptotic normality of the
estimator, as the number of rows in A is increasing. We provide that the covariance
structure of the limiting Gaussian random matrix is nonsingular.

1. INTRODUCTION

We deal with an overdetermined set of linear equations AX ~ B, which is common in
linear parameter estimation problems [12]. If both the data matrix A and observation
matrix B are contaminated with errors, and all the errors are uncorrelated and have equal
variances, the total least squares (TLS) technique is appropriate for solving this set [4],
[12]. Under mild conditions, the TLS estimator of X is consistent and asymptotically
normal, as the number of rows in A is increasing [3], [7].

In this paper we consider heteroscedastic errors. The errors in [A, B] are row-wise
independent, but within each row the errors may be correlated. Some of the columns are
observed without errors, and the error covariance matrices may differ from row to row.
The total error covariance structure is assumed known up to a scalar factor. For this
model, the element-wise weighted total least squares (EW-TLS) estimator is introduced
and its consistency is proven in [6]. Concerning the computation of the estimator see
[10], [5]. The EW-TLS estimator X is applied, e.g., in geodesy [9].

Our goal is to extend the asymptotic normality result of [7] to the EW-TLS estimator.
We work under the conditions of Theorem 2, [6] about the consistency of X. We use the
objective function of the estimator, see formula (22) in [6], and the rules of matrix
calculus [2].

The paper is organized as follows. In section 2, we describe the model, introduce main
assumptions, refer to the consistency result for X and present the objective function
and the matrix estimating function. In Section 3, we state the asymptotic normality
result and provide a nonsingular covariance structure for a limiting random matrix. In
Section 4, we derive consistent estimators for nuisance parameters of the model in order to
estimate consistently the asymptotic covariance structure of X , and Section 5 concludes.
The proofs are given in Appendix.

Throughout the paper all vectors are column ones, E stands for expectation and acts
as an operator on the total product, cov(z) denotes the covariance matrix of a ran-
dom vector z, and for a sequence of random matrices {X,,,m > 1} of the same size,
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notation X, = O,(1) means that the sequence {||X,,||} is stochastically bounded, and
Xm = 0p(1) means that ||X,,|| 5o. I, denotes the identity matrix of size p.

2. OBSERVATION MODEL AND CONSISTENCY OF THE ESTIMATOR

2.1. The EW-TLS promblem. We deal with the model AX ~ B. Here A € R™*" and
B € R™*4 are matrices of observations, and the matrix X € R"*? is to be estimated.
Assume that

(2.1) A=Ay+ A, B=By+B,
and that there exists Xy € R"*? such that
(2:2) AoXo = By.

Here Ay is nonrandom true input matrix, By is a true output matrix, and fl, B are error
matrices. Xg is the true value of the matrix parameter.
It is useful to rewrite the model (2.1) and (2.2) as a classical errors-in-variables (EIV)

model [1]. Denote a; , ag;, @; , b, bg;, b, i =1,...,m, the rows of A, Ay, A, B, By and

aj 07
B, respectively. Then the model above is equ1valent to the EIV model
(23) a; = ap; + a;, b; :b0i+l~)i,boi:X(—)ra0¢, i=1,....,m

Vectors ag; are nonrandom and unknown, and vectors a;, Bl are random errors. Based
on observations a;, b;, ¢ = 1,...,m, one has to estimate Xj.
Rewrite the model (2.1) and (2.2) in an implicit way. Introduce matrices

(2.4 C=AB) =L, C=1AiB] 2= |%].

Then (2.1), (2.2) is equivalent to the next relations:

C=Co+C, CoZy=0.
Let C = (€ij,i=1,...,m, j=1,...,n+d). Following [6] we state global assumptions
)

of the paper, conditions (i) to (iv).
(i). Vectors & := (Gi1,...,Cin+a) ,4=1,2,..., are independent with zero mean and
finite second moments.
Let 0 = Ecw, =1,2,...,5=1,...,n+d. We allow that some of Ufj are vanishing.
(ii). For a fixed J C {1,2,...,n+d}, every j ¢ J and every i = 1,2,... satisfy
o2 = 0. Moreover

ij
cov(Gj,j€J)=0%;, i=12,...,

with unknown positive factor of proportionality o2 and known matrices ¥;.
(iii). There exists » > 0 such that for every i = 1,2, ..., it holds Apin(2;) > 5%
For the matrix Zy = (2o jx) given in (2.4) and the set J from condition (ii), denote

Z()J = (zO,jlmj c J,k‘ = 1,...,d).
(iv).
rank(Zpy) = d.

The EW-TLS problem consists in finding the value X of the unknown matrix X and
values of disturbances AA, AB minimizing the weighted sum of squared corrections:

2.5 52l | P
(2:5) (XeR"XdAAAB)ZH il
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subject to constrains

(A—AAX =B—-AB, Ac/ =0, i=1,....m, j¢&.J.
Here C = [4, B] = (¢;5), AC = [AA, AB] = (Ac;;) and the column vectors

Ac] = (Acij,j € J) e RVL
2.2. EW-TLS estimator and its consistency. For a random realization, it can hap-

pen that the problem (2.5) has no solution. Assume conditions (i) — (iv).

Definition 1. The EW-TLS estimator X = Xpw_rrs of X in the model (2.1), (2.2)
is a Borel measurable mapping of the data matrix C' into R"*¢ U {co}, which solves the
problem (2.5) under the additional constraint

(2.6) rank(Zy) =d
<here 7 = { )i ] = (2jk), Zy = (zjk,j € J,k=1,... 7d)) , if there exists a solution, and
—Ia

X = 0o otherwise.

The EW-TLS estimator always exists due to [11]. We need more conditions to provide

the consistency of X.

d+1
(v). There exists r > 2 with r > d <|J| - ;) such that

sup  E|&;]* < oo.

(i21,5€7)
Amin(Ag A
(vi). \(FOO) — 00, as M — 0.
m
N2 (A Ap)
(Vll) m — 00, as M — 00.

The next result on weak consistency is stated in Theorem 2, [6].

Theorem 2. Assume conditions (i) to (vii). Then the EW-TLS estimator X is finite
with probability tending to one, and X tends to Xg in probability, as m — oo.

Notice that under a bit stronger assumptions on eigenvalues of A] Ao, the estimator
X is strongly consistent, see Theorem 3, [6].

2.3. The estimating function. Remember that error vectors ¢; enter condition (i) and
the matrix Z = Z(X) is introduced in Definition 1. Let

1
S = — ), i=1,2,...
= cov(c;),i
Denote also
(2.7) (¢, 8;X)=c"2(Z2"82)" 1 Z7¢,

where ¢ = {Z] e Rintd)x1 g ¢ R(ntd)x(ntd) 4 q

m
(2.8) QX)=> qlci,Si;X), X eR™, rank(Z,) = d.
i=1
Notice that due to (iv) |J| > d, and under constraint (2.6) Z; is of full rank. Then,
under conditions (i) — (iii) the matrix ZTS;Z is nonsingular, i = 1,2,...
The EW-TLS estimator is known to minimize the objective function (2.7), see Theo-
rem 1, [6].
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Lemma 3. Assume conditions (i) to (). The EW-TLS estimator X is finite if, and

only if, there exists an unconditional minimum of the function (2.8), and then X isa
minimum point of this function.

Introduce an estimating function related to the loss function (2.7):

(2.9) s(a,b,8;X)=5-(Z2"82)7",
(2.10) §=25(a,b,8;X):=ac'Z —[Sa, S| Z(Z"SZ) ' Z " Z.
Here

_|a nx1, _ Sa Sap nxn
(2.11) c-[b], a € R"™, S_[Sba Sb:|7 S, € R™™™,

Corollary 4. Assume conditions (i) — (vii). Then the next two statements hold true.

(a) With probability tending to one X is a solution to the equation
s(ai, bi, Si; X) =0, X € R"™4 rank(Z,) = d.
i=1
(b) The function (2.9) is an unbiased estimating function, i.e., for each i > 1,
EXO s(ai, bi, SZ‘; XQ) =0.

For fixed a, b, S, the function (2.9) maps X into R"*9. The derivative s’y is a linear
operator in this space.

Lemma 5. Under conditions (i) — (vii), for each H € R"? and i > 1 it holds
Ex, [SfX (ai, b;, Si; X()) . H} = aoia,(—l)—iH(ZQSiZO)_l.

3. ASYMPTOTIC NORMALITY OF THE ESTIMATOR

Introduce further assumptions.

(viii). For some § >0, sup E|&;|"® < oo,
(i>1,j€J)
(ix). For ¢ from the condition (viii),
1 m

Z l|aoi||*T® = 0, as m — oc.
i=1

mltd/2

1
(x). —Ag Ao — Va, as m — 0o, where Vy4 is a nonsingular matrix.
m
Notice that condition (x) implies assumptions (vi), (vii).
(xi). For matrices from condition the (ii), ¥; = Yoo, as m — 0o, where ¥, is certain
matrix.
Notice that conditions (xi), (iii) imply that X, is nonsingular.
(xii). If p,q,r € J (they are not necessarily distinct) and i > 1, then
EéipCigCir = 0.
1 m
(xiii). If p,q,r,u € J (they are not necessarily distinct), then - Z E €ipCiqCirCin coOn-

i=1
verges to a finite limit u4(p, ¢, 7, u), as m tends to infinity.

Introduce a random element in the space of couples of matrices:
(31) W1 = (aOiéj,éiéT - 0251').

4

Hereafter -5 stands for the convergence in distribution.
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Lemma 6. Assume conditions (i), (ii) and (viii) — (ziii). Then
1 & d
(3.2) — W, =T =T1,T2), asm — oo,
o

where I' is a Gaussian centered random element with independent matriz components I'y
and T's.
Now, we state the asymptotic normality of the EW-TLS estimator.

Theorem 7. Assume conditions (i) — (v) and (viii) — (ziii). Then

(3.3) Vm(X — Xo) S V'T(Xo), as m — oo,
(3.4) D(X):=T1Z+ P,T2Z — [§>,8%)|2(Z" S0 Z) (2 T22),

a

b} = a, I'1 and T's enter

where Va enters condition (z), P, is the projector with P, [

relation (3.2), and

S Sy . ‘ X
(3:5) Soo = [ngj ng] = lm S, Z= |:Id] '
Moreover the limiting random matriz X = VA_lf(Xo) has a nonsingular covariance

structure, i.e., for each nonzero vector u € R¥*1, cov(Xoou) is a nonsingular matriz.

4. CONSTRUCTION OF CONFIDENCE REGION FOR A LINEAR FUNCTIONAL OF X,

4.1. Estimation of nuisance parameters. Theorem 7 can be applied, e.g., to con-
struct a confidence region for a linear functional of Xy. For this purpose one has to
estimate consistently a covariance structure of the limiting random matrix V; T(Xo).
Such a structure, besides of Xy, depends on nuisance parameters. Some of them can be
estimated consistently.

Hereafter bar means average for rows ¢ = 1,...,m, e.g.,

m m
abi—'—:m_LZaibiT, gzm_lZSi.
1=1 i=1
Lemma 8. Assume conditions of Theorem 7. Define

(4.1) 7= ({) 62 = étr [(ZTCTTZ)(ZTSZ)*l} :

(4.2) Va=aal —528.
Then, as m — oo,
2552 vy By,
4.2. Estimation of the asymptotic covariance structure of X;. Let u € R*1!,
u # 0. Theorem 7 implies the convergence

(4.3) Vm(Xu— Xou) S N(0,S,), asm — oo,
with nonsingular matrix S, = cov(V; 'T(Xo)u).
We start with the case of normal errors ¢, i = 1,2,... Then condition (xii) holds

true, and Theorem 7 is applicable. The asymptotic covariance matrix S, is a continuous
function S, = S, (X0, Va, 02, Soo) of unknown parameters (here the limiting covariance
matrix S, could be unknown, though for a given m, matrices Si,...,.S,, are assumed
known). Due to Theorem 2 and Lemma 8 the matrix

(4.4) Sy = Su(X, V4,62, 9)
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is a consistent estimator of S,.

Now, we do not assume the normality of the errors. Then the exact formula for S,
does not allow to estimate it consistently, because the formula involves higher moments
of errors which are difficult to estimate consistently. Instead, we use Corollary 4 to
construct the so-called sandwich estimator [1] for S,,. Denote

(4.5) 8 = 5(a;,b,8;X), i=1,...,m,
with § introduced in (2.10)

Lemma 9. Assume conditions of Theorem 7. For u € R u # 0, define

N . 1 &
4.6 Sy=Vit = suu's)
( ) A mZS’U,U S s

i=1
with V given in (4.2), (4.1). Then S, 5 8., as m — oo,

Remark. In the case of normal errors, the estimator (4.4) is asymptotically more
efficient than the estimator (4.6), cf. the discussion in [1], p. 369.
Given a consistent estimator S, of S,,, we have from (4.3) that

(4.7) Vm(Se) V2 (Xu — Xou) S N(0,1,), asm — oo.

Based on (4.7), one can construct in a standard way an asymptotic confidence ellipsoid
for Xou. Similarly a confidence ellipsoid can be constructed for any finite set of linear
combinations of X entries.

5. CONCLUSION

We proved the asymptotic normality of the EW-TLS estimator in a multivariate errors-
in-variables model AX & B with heteroscedastic errors. We assumed the convergence
(xi) of the second error moments, vanishing third moments (xiii), and the convergence
of averaged fourth moments (xiii). The condition (xii) ensured that the asymptotic
covariance structure of X is nonsingular. This condition holds true in two cases: (a) all
the error vectors ¢; are symmetrically distributed, or (b) for each ¢, random variables &,
p € J, are independent and have vanishing coefficient of asymmetry.

The obtained asymptotic normality result made it possible to construct a confidence
ellipsoid for a linear functional of X(. Another plausible application is goodness-of-fit test
in the model AX ~ B with heteroscedastic errors (see [7] for such a test in the model
with homoscedastic errors).

The author is grateful to Prof. A. Kukush for the problem statement and fruitful
discussions.

APPENDIX

Proof of Corollary 4. (a) The space R"*? is endowed with natural inner product
< A, B >= tr(ABT"). The matrix derivative ¢’ of the functional (2.7) is a linear func-
tional on R™*¢, and based on the inner product, this functional can be identified with
certain matrix from R"*9,

Remember that Z = Z(X) is introduced in Definition 1. Using the rules of matrix
calculus [2], we have for H € R™"*4

H

<dy,H>=c" {0

} (Z"SZ) ' Z e+ (Z27SZ2)" - [HT,0]c—

VAR VAR ([HT, 0SZ+2'S {ﬂ) VARV AR AR
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Remember relations (2.11). Collecting similar terms, we obtain:
1
—<q¢ H>=a"H(Z"'SZ)'Z c—

2
—c'Z(z"8z)'z" [5“] H(Z'SZ)"'Ze,
ba

and
% < ¢, H>=trlac' Z(Z"SZ)"'H" |~
tr [[Se, Sap)Z(Z27S2) 1 Z ec" 2(ZTSZ) ' HT].

Using the inner product in R"*? we obtain

Sd =327 52) 7,

with §(X) = §(a,b,S; X) given in (2.10). Now, Theorem 2 and Lemma 3 imply the
statement of Corollary 4(a).
(b) We set

(Al) a:aOer, b:b0+5, b():XTao, CC()+(E|:ZO:|+|:%J:|,
0

where ag is a nonrandom vector and like in (2.3),

Se S

~N o 2qQ __ 2 a ab ~
cov(é)=0"S =0 |:Sba Sb:|, Ec=0.
Then

Exac' Z = apc) { )i } +Eaé' Z = %S4, Sa) Z,
—1d

Excc' Z = cocq [ )i } +Eé' Z=0%52.
—4d

Therefore, see (2.9),
Ex 5(a,b,8;X) = 0%[Sq, Sap] Z — 0%[Sa, Sap)|Z(Z"SZ) 1 (Z2752Z) =0
The statement (b) of Corollary 4 is proven.

Proof of Lemma 5. The derivative s’y of the function (2.9) with respect to X is a
linear operator in R"*<. Denote f = f(Z) = Z(Z"SZ)~'. For H € R"* it holds:

§H =aa"H — [Sq, Sap|(f5x H)(Z " cc" Z) — [Sa, Sap)f - ([HT, Olcc" Z + Z"ec” [ISD .

We set (A.1), use relations

Eaa' = apag +02S,, Ex(cc' Z) =057

and get:
Ex(3vH) = (apad + 0%S,)H — 0[S, S| (fx H)(ZTSZ)—
(A-2) —62[Sa, Sl f - <[HT,0}SZ + 778 [f)f]) .
Next,

(A3) fioH = [I(ﬂ (2782)" — 2(2757)! ([HT7O]SZ + 278 [%’D (Z782)".
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Combining (A.2) and (A.3) we see that on the right-hand side of (A.2) summands
containing H " are cancelled out. We get finally

Ex(8%H) = apag H,
which implies the statement, because by Corollary 4(b) it holds Ex §(a, b, S; X) = 0.

Proof of Lemma 6. The proof is similar to the proof of Lemmas 6 and 7 from [7] and
based on Lyapunov’s Central Limit Theorem. We just notice that due to condition (xii)
the matrix components of W;, namely aol-éiT and EiéiT — 028;, are uncorrelated, and this
implies the independence of matrix components I'y and T’y in (3.2).

Proof of Theorem 7. We follow the line of [7], see there the proof of Theorem 8(a).
By Corollary 4(a), it holds with probability tending to 1:

(A.4) s(ai,bi,Si;X) =0.
=1

(3

Denote

A=ym(X = Xo), ym = s(aibi,Si;X0), Un=>_ sx(aibi,Si;X).

% i=1

Using Taylor’s formula around X (see [2], Theorem 5.6.2), we obtain from (A.4) that

I

Il
-

1 A 1

—Upn | A= ——yn t1,

-~ ) A my —+ rest;
[Iresta || < [|A]] - [|X = Xol| - Op(1).
Here O,(1) is a multiplier of the form

(A.5)

(A.6) Z sup |8 (a;, b, Si; X)|I,

1
m =7 (JIX —Xo||<eo)
with positive g chosen such that rank(Z;) = d, for all X with || X — Xy|| < eo; the choice
is possible due to condition (iv), and expression (A.6) is indeed O,(1) (i.e., stochastically
bounded), because s is quadratic in ¢; and the averaged second moments of ¢; are
assumed bounded. Thus, the relation (A.5) holds true due to the consistency of X
stated in Theorem 2.

We have [|rest1]| < [|A]] - 0p(1). Now, by Lemma 5 and condition (x) and (xi) it holds

%UmH =VaH(Zy SeoZo) ™t +0,(1), H € R™4
and we derive from (A.5) the relation
(A7) VaA(Z] SxZo) ! = —\/%y T resty, resta]] < [|A]| - 0p(1).
The summands in y,, have zero expectation by Corollary 4(b). Remember that cy; Zp = 0
and the projector P, is introduced in Theorem 7. Then, see (2.9),
§(ai, bi, Si; Xo) = (aoi + )& Zo — [Sai, Seil Z0(Zg SiZo) ™ (2, &) Z),
§(ai, bi, Sz'; Xo) = WuZo+ P,W;2Zy — [Saia Sbi]ZO(Z(;rSiZO)_l(Z(—)rWiQZ[))~

Here W;; are components of (3.1). By Lemma 6 it holds, see (3.4) and condition (xi):
(A.8) %ym 4 T(X0) (2] SsoZ0)”Y, as m — 0.

Now, relations (A.7), (A.8) and nonsingularity of V4 imply A = O, (1) and by Slutsky’s

lemma,
VaA(ZJ S0 Z0) ™1 S T(X0)(Z] SsoZ0) ™", as m — oo.
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This implies the desired convergence (3.3) — (3.5).
Let u € R™! 4 # 0. By Lemma 6 the components I'; and I'y are independent. We
have

1 m
cov(I'(Xp)u) > cov(l'1 Zpu) = lim — Z E(aoié, Zouu' Zg ¢ag;) =
i=1

m—o00 M

= 0?Valu (Z] SeoZ0)ul,

and the latter matrix is positive definite, because V4 and ZJ SscZ are positive definite
under the conditions of Theorem 7. Therefore, cov(Xsou) is a positive definite matrix
as well.

Proof of Lemma 8. We have
EciczT = c()ic(—'); +028S;, Z(;'—(E cl-c;r)Zo = O'QZJS7;Z0,

1 N _
(A.9) o? = gtr (ZOTciclTZO)(ZOTSZO)*l} + 0p(1).

Relation (A.9) and the convergence 75 Zo imply the desired convergence &2 R o2,
as m — 0o.
Next,

Va=Eaa' +o0,(1) — %8 = apad + (6% —6%)S + 0,(1),

>, P . T
Va— lim agay =Va.
m—0o0

Proof of Lemma 9. Denote §; = 5(a;, b, S;; Xo), ¢ = 1,2,... Then expansion (A.7)
implies that

i=1
and by Lemma 8
R 1 &
Su=Vit =Y Fuu 5 1),
A m;suuzsz—i—o])()
. . 1 &
Su_Suzvil'*g 7.iTAT_z1 1
A m (Suuzsz Suuisz)+op()

Then S, — S, & 0, as m — oo, because Z 5 Zy and ccT = Op(1) (see formulas (2.9),
(2.10) and (4.5)). Lemma 9 is proven.
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