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G. V. RIABOV

A REPRESENTATION FOR THE KANTOROVICH–RUBINSTEIN

DISTANCE DEFINED BY THE CAMERON–MARTIN NORM OF A

GAUSSIAN MEASURE ON A BANACH SPACE

A representation for the Kantorovich–Rubinstein distance between probability mea-

sures on a separable Banach space X in the case when this distance is defined by the

Cameron–Martin norm of a centered Gaussian measure µ on X is obtained in terms
of the extended stochastic integral (or divergence) operator.

1. Introduction

Consider a separable Banach space (X, ‖ · ‖) equipped with a centered Gaussian mea-
sure µ on the Borel σ−field of X. We will assume that supp µ = X. Let (H, | · |H) be the
Cameron–Martin space of µ, i.e. the separable Hilbert space densely and continuously
embedded in X and such that∫

X

exp(il(x))µ(dx) = exp

(
− 1

2
|l|2H

)
, l ∈ X∗.

Because of continuous embedding of H into X, a functional l ∈ X∗ can be considered as
a continuous linear functional on H. In the latter expression |l|H denotes the norm of l
as an element of H∗.

The spaceM(X) of Borel probability measures on X is endowed with the Kantorovich-
Rubinstein distance [1, §1.2]

W1(ν0, ν1) = inf
π∈C(ν0,ν1)

∫
X

∫
X

|x1 − x0|Hπ(dx0, dx1),

where C(ν0, ν1) is the set of all Borel probability measures on X ×X with marginals ν0
and ν1.

The aim of the present paper is to establish the following representation for W1.

Theorem 1.1. Consider probability measures ν0, ν1 ∈ M(X) with ν1 − ν0 � µ and
d(ν1−ν0)

dµ ∈ L2(X,µ). Then

(1) W1(ν0, ν1) = inf
Iu=

d(ν1−ν0)
dµ

{∫
X

|u(x)|Hµ(dx)

}
.

Here I denotes the extended stochastic integral (or the divergence operator, see the
next section for precise definitions). We consider the action of I on square integrable
H−valued vector fields u : X → H only. Accordingly, the infimum is taken over all
u ∈ L2(X,µ;H) that solve the equation

(2) Iu =
d(ν1 − ν0)

dµ
.
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This work was partially motivated by results of [2] where several integral representa-
tions for square integrable functions on (X,µ) were derived. Namely, for every function
α ∈ L2(X,µ) the equation

(3) α =

∫
X

αdµ+ Iu

has infinitely many solutions u ∈ L2(X,µ;H). In the case of the classical Wiener space
one particular solution is distinguished. Namely, if X = C0([0, 1]) is the space of conti-
nuous functions f : [0, 1] → R, f(0) = 0 and µ is the Wiener measure, then there is a
unique solution u0 of (3) which is adapted to the natural filtration on C0([0, 1]) [3, Ch.
V, §3]. When α is the probability density, i.e. α ≥ 0 and

∫
X
αdµ = 1, the representation

α = 1 + Iu0

is connected to the measure transportation via the Girsanov theorem [3, Ch. VIII, §1].
The mapping T : C0([0, 1])→ C0([0, 1]) defined by

T (x)(t) = x(t)−
∫ t

0

u0(s, x)

1 + I(u01·≤s)(x)
ds

sends the measure α · µ into the Wiener measure µ :

(α · µ) ◦ T−1 = µ.

Moreover, the mapping T is in a sense optimal [4, 5]. For every mapping S : X → X
such that S(x)− x ∈ H and (α · µ) ◦ S−1 = µ one has∫

X

|T (x)− x|2Hµ(dx) ≤
∫
X

|S(x)− x|2Hµ(dx).

In the general situation there is still a connection between the transportation of measure
and the equation (3). An estimate on the Kantorovich–Rubinstein distance in terms of
solutions of (3) was obtained in [6]. It was proved that for a sufficiently smooth density
α one has

(4) W1(α · µ, µ) ≤
∫
X

|(1 + L)−1Dα|Hdµ,

where D denotes the stochastic derivative and (−L) is the generator of the Ornstein-
Uhlenbeck semigroup. Our result (1) generalizes this inequality. Indeed, the identity [7,
Prop. 1.3.1, 1.4.3]

DI = 1 + L

implies that (1 + L)−1Dα is a solution to (3). The existence of a solution to the Monge
problem associated withW1 was proved in [8] under assumptions ν0, ν1 � µ, W1(ν0, ν1) <
∞. Namely, it was proved that a mapping T : X → X such that

ν0 ◦ T−1 = ν1, W1(ν0, ν1) =

∫
X

|x− T (x)|Hν0(dx)

exists. For several other estimates of the quantity W1(ν0, ν1) as well as for the extensive
treatment of the optimal transport theory we refer to [9].

Another motivation for the undertaken research is the study of geodesics on the space
(M(X),W1) [11, Ch. 7]. In the case p > 1 the differential structure of the space
(M(X),Wp) is studied rather detaily [12, 13, 14, 15]. The assumption p > 1 allows to
apply powerful technique from convex analysis. In the limit p→ 1+ certain results about
geodesics in (M(X),W1) can be obtained [14]. However, the distance W1 is not strictly
convex. This results in existence of multiple geodesics between different measures while
the described approximating approach gives results only for particular W1−geodesics. In
general, the behaviour of geodesics in the space (M(X),W1) remains unstudied. Proved
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identity (1) gives an intrinsic description of the W1−distance between measures. In our
further work it will be applied to the study of W1−geodesics.

2. Notations and Preliminary Results

For a detailed exposition of the theory of Gaussian measures on Banach spaces we
refer to [10].

A function f : X → R will be called a smooth cylindrical function, if it has a repre-
sentation

f(x) = ϕ(l1(x), . . . , ld(x)), x ∈ X,
where l1, . . . , ld ∈ X∗ and ϕ ∈ C∞(Rd) is bounded together with all derivatives. The
family of all smooth cylindrical functions will be denoted by FC∞.

Stochastic derivative D is naturally defined for a fuction f ∈ FC∞ with a representa-
tion f(x) = ϕ(l1(x), . . . , ld(x)) :

Df(x) =

d∑
i=1

∂iϕ(l1(x), . . . , ld(x))li ∈ H.

Then D is extended to a closed (unbounded) operator

D : L2(X,µ)→ L2(X,µ;H).

Functions in the domain of D are called stochastically differentiable. Denote by I the
adjoint operator to D,

I = D∗.

According to such definition we consider the action of I on elements u ∈ L2(X,µ;H)
exceptionally.

Following [16] we will call I the extended stochastic integral. In terms of the integra-
tion by parts formula one has the characterization (see [10, §5.8] for equivalent definitions
of the operator I):

for every stochastically differentiable f ∈ L2(X,µ)∫
X

(u,Df)Hdµ =

∫
X

Iu · fdµ.

Remark 2.1. In [10, 7] the operator (−I) is denoted by δ and is called a divergence
operator. The term “extended stochastic integral” is kept for a specific situation when
H is an L2-space. Our terminology is chosen to underline the connection between the
operator I and integral representations of random variables (3).

The Ornstein-Uhlenbeck semigroup is denoted by (Tt)t≥0 :

Tth(x) =

∫
X

h(e−tx+
√

1− e−2ty)µ(dy).

For each p ≥ 1 (Tt)t≥0 is a strongly continuous semigroup of contractions in Lp(X,µ)
[10]. We will also consider the action of Tt on measures. Given a signed measure ν on
X define

Ttν(A) =

∫
X

Tt1A(x)ν(dx) =

∫
X

∫
X

1A(e−tx+
√

1− e−2ty)µ(dy)ν(dx).

Duality considerations imply that Tt is still a contraction:

‖Ttν‖v ≤ ‖ν‖v,
where ‖ · ‖v denotes the total variation norm.

Among integral representations (3) of a random variable α there is a unique represen-
tation with a minimal L2(X,µ;H) norm [2]. In the next lemma all the needed properties
of this representation are gathered.
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Lemma 2.1. [2, L. 6,7]. Define the mapping

v(α) = D

∫ ∞
0

Ttαdt, α ∈ L2(X,µ).

Then

• v : L2(X,µ)→ L2(X,µ;H) is a bounded linear operator of the norm 1;
• for every α ∈ L2(X,µ) v(α) is a solution to (3):

α =

∫
X

αdµ+ Iv(α);

• for any solution u to (3) one has∫
X

|v(α)|2Hdµ ≤
∫
X

|u|2Hdµ.

3. Proof of the Theorem 1.1

In this section the proof of the equality (1) is presented.

Proof. For convenience we divide the proof into three steps.
Step 1. The inequality ≤ .
The well-known Kantorovich–Rubinstein theorem [1, Th. 1.14] states that

(5) W1(ν0, ν1) = sup

{∫
X

fd(ν1 − ν0)

}
,

where the supremum is taken over all bounded measurable functions f : X → R that
satisfy the condition

|f(x+ h)− f(x)| ≤ |h|H , x ∈ X,h ∈ H
(we will call such functions 1−Lipschitzian along H [10, §4.5]).

Hence, to prove ≤ in the representation (1) it is enough to check the inequality

(6)

∣∣∣∣ ∫
X

fdν1 −
∫
X

fdν0

∣∣∣∣ ≤ ∫
X

|u|Hdµ,

where f : X → R is a bounded measurable 1−Lipschitzian function along H and u ∈
L2(X,µ;H) satisfies (2):

Iu =
d(ν1 − ν0)

dµ
.

According to [10, Th. 5.11.2, Cor. 5.4.7] the function f is stochastically differentiable
with |Df |H ≤ 1. This implies the following chain of inequalities.∣∣∣∣ ∫

X

fdν1 −
∫
X

fdν0

∣∣∣∣ =

∣∣∣∣ ∫
X

d(ν1 − ν0)

dµ
· fdµ

∣∣∣∣ =

∣∣∣∣ ∫
X

Iu · fdµ
∣∣∣∣ =

=

∣∣∣∣ ∫
X

(Df, u)Hdµ

∣∣∣∣ ≤ ∫
X

|Df |H |u|Hdµ ≤
∫
X

|u|Hdµ.

The relation (6) together with the inequality ≤ in (1) are proved.
The relation (5) implies that the distance W1(ν0, ν1) depends only on the density

ρ = d(ν1−ν0)
dµ ∈ L2(X,µ). Thus we will denote the quantity W1(ν0, ν1) by W1(ρ) as well

and will consider it as a function on the set L2
0(X,µ) = {ρ ∈ L2(X,µ) :

∫
X
ρdµ = 0}.

Accordingly, let us denote the right-hand side of (1) by N (ρ), i.e.

N (ρ) = inf
Iu=ρ

∫
X

|u|Hdµ.

Our strategy of proving equality in (1) is to check continuity of W1 and N on L2
0(X,µ)

and to prove the equality for a dense set of functions ρ ∈ L2
0(X,µ).
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Step 2. Continuity of functionals W1 and N .
The supremum in (5) can be reduced to the set of all bounded measurable 1-Lipschitzian

functions along H with zero integral ∫
X

fdµ = 0.

Then the concentration inequality [10, Th. 4.5.7]

µ(|f | > r) ≤ 2e−
r2

2 , r > 0

implies the bound ∫
X

f2dµ ≤ 4.

Hence for arbitrary ρ1, ρ2 ∈ L2
0(X,µ) one has∣∣∣∣ ∫

X

fρ1dµ−
∫
X

fρ2dµ

∣∣∣∣ ≤ 2

√∫
X

(ρ1 − ρ2)2dµ.

From the representation (5) one has the estimate

|W1(ρ1)−W1(ρ2)| ≤ 2

√∫
X

(ρ1 − ρ2)2dµ.

For the functional N similar estimate follows from the existence of the minimal norm
representation operator v (see lemma 2.1). Indeed, consider ρ1, ρ2 ∈ L2

0(X,µ). For each
solution u of Iu = ρ1 one has

I(u+ v(ρ2 − ρ1)) = ρ2.

By the properties of v,

N (ρ2) ≤
∫
X

|u+ v(ρ2 − ρ1)|Hdµ ≤
∫
X

|u|Hdµ+

√∫
X

|v(ρ2 − ρ1)|2Hdµ

≤
∫
X

|u|Hdµ+

√∫
X

(ρ2 − ρ1)2dµ.

Taking infimum in u and repeating the argument we get the inequality

|N (ρ1)−N (ρ2)| ≤

√∫
X

(ρ1 − ρ2)2dµ.

It remains to prove the inequality ≥ in (1) for a dense family of functions ρ ∈ L2
0(X,µ).

Step 3. The inequality ≥ .
Let {en} be the orthonormal basis in H and {ên} be the corresponding measurable

linear functionals on X. Denote by γn the standard Gaussian measure on Rn. Functions
of the form

(7) ρ(x) = κ(ê1(x), . . . , ên(x)), κ ∈ L2
0(Rn, γn)

form a dense set in L2
0(X,µ). We will finish the proof by establishing the inequality ≥ in

(1) for a function ρ of the form (7).
In [17, Proof of Prop. 4.1] the following consequence of the Riesz–Markov–Kakutani

representation theorem is derived: there exists an Rn−valued Borel measure π on Rn
such that

(1) for all f ∈ FC∞ one has∫
Rn

(Df, dπ) =

∫
Rn
fκdγn;
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(2) W1(ρ) coincides with the total variation of the measure π :

W1(ρ) = ‖π‖v =

( n∑
i=1

‖πi‖2v
) 1

2

.

Symmetry of the Ornstein-Uhlenbeck semigroup implies following relations.∫
Rn
f(Ttκ)dγn =

∫
Rn

(Ttf)κdγn =

∫
Rn

(D(Ttf), dπ)

= e−t
∫
Rn

(TtDf, dπ) =

∫
Rn

(
Df, e−t

dTtπ

dγn

)
dγn.

In other words, the function

u(x) = e−t
n∑
j=1

(
dTtπj
dγn

(ê1(x), . . . , ên(x))

)
ej

is a solution to the equation

Iu = Ttρ.

In particular,

N (Ttρ) ≤
∫
X

|u|Hdµ = e−t
∫
Rn

∣∣∣∣dTtπdγn

∣∣∣∣dγn = e−t‖Ttπ‖v ≤ ‖π‖v = W1(ρ).

Taking the limit t→ 0+ we obtain the inequality ≥ in (1). The theorem is proved. �

Acknowledgement. The author is grateful to the referee for suggesting a better
scheme of the proof and improving the overall presentation.
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