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MING LIAO

MARKOV PROCESSES AND GROUP ACTIONS

We develop basic properties of a Markov process that is invariant under the action

of a locally compact topological group.

1. Introduction

The invariance of probability distributions under various transformations plays an
important role in the probability theory. In the classical theory, the translation invariant
Markov processes in a Euclidean space Rn can be identified with Lévy processes, which
are processes xt that have independent and stationary increments in sense that for any
s < t, xt − xs is independent of the process up to time s and its distribution depends
only on t− s. Lévy processes in Rn have been extensively studied, but they still generate
enormous interests, see Applebaum [1], Bertoin [4] and Sato [35] for some of modern
books on this subject. By the celebrated Lévy -Khinchin formula, a Lévy process may be
represented by a triple of a drift vector, a covariance matrix and a Lévy measure, in the
sense that its distribution is determined by the triple, and to any such triple, there is a
Lévy process, unique in distribution. A natural extension is to study Markov processes in
a group that is invariant under the left or right translations. Hunt’s 1956 pioneering work
[20] provided an explicit formula for the generator of such an invariant Markov process
in a Lie group, which allows us to represent such a process in distribution by a triple of
a drift vector, a covariance matrix and a Lévy measure, just as for a Lévy process in Rn.

Purpose of this paper is to develop the basic definitions and properties of invariant
Markov processes under the more general framework of a topological group acting con-
tinuously on a space, both are assumed to be locally compact. Some of these results may
be known in various contexts, but this is the first time they are put together in a unified
and cohesive fashion.

Invariant Markov processes under topological group actions may be considered at
three levels of generality. First, we may consider Markov processes in a topological
group G that are invariant under the left (or right) translations. Such processes are
direct extensions of classical Lévy processes in Rn, and can be identified with processes
in G that have independent and stationary increments of the form x−1

s xt (or xtx
−1
s ) for

s < t. At the second level, we may consider a Markov process xt in a topological space
X that is invariant under the transitive action of a topological group G on X. In this
case, X may be identified with a topological homogeneous space G/K, and xt with a
Markov process in G/K invariant under the natural G-action.

We will call a Markov process in G invariant under left translations, or a Markov
process in G/K invariant under the natural G-action, a Lévy process. A homogeneous
space G/K does not possess a natural product structure. To study invariant Markov
processes in G/K, we have developed a theory of a kind of product “in distribution” on
G/K that allows us to carry over almost all the results on the groupG to the homogeneous
space G/K. For example, it is easy to show that Lévy processes in G/K, which are
defined as G-invariant Markov processes, can be characterized as processes that have
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independent and stationary increments in a suitable sense, just as their counterparts in
G.

At the third level of generality, we may consider a Markov process xt invariant under
the non-transitive action of a topological group G. In this case, under some suitable
assumptions, xt may be decomposed into a radial part and an angular part. The radial
part can be an arbitrary Markov process in a subspace that is transversal to G-orbits,
whereas under the conditional distribution given the radial part, the angular part is a
(time) inhomogeneous Markov process in a standard G-orbit that is invariant under the
G-action.

This leads us to consider inhomogeneous Markov processes that are invariant under
a group action. It is easy to show that inhomogeneous Markov processes xt in a group
G invariant under left translations, or in G/K invariant under the natural G-action,
may be identified with processes that have independent, but not necessarily stationary,
increments, so such processes will be called inhomogeneous Lévy processes.

As our purpose is limited to developing the basic properties under the general frame-
work of the action of a locally compact topological group, without involving Lie structures
and Fourier analysis, so many deeper aspects of invariant Markov processes are not dis-
cussed here. We briefly mention some of these topics. Heyer [18] generalized Hunt’s
generator formula on Lie groups to locally compact groups in the form of a sum of three
maps, corresponding to a drift, a diffusion part and a jump part. Using a projective
basis of Lie algebras, Born [6] rewrote Heyer’s formula in a form more closely resembling
Hunt’s formula. For inhomogeneous Lévy processes in Lie groups, Feinsilver [11] (1978)
obtained a martingale property, generalizing a result of Stroock-Varadhan [37] (1973) for
continuous processes. By this martingale property, an inhomogeneous Lévy process is de-
termined in distribution by a time dependent triple of a deterministic path, a covariance
matrix function and a Lévy measure function. A different form of martingale representa-
tion on more general locally compact groups, in terms of the abstract Fourier analysis, is
obtained in Heyer-Pap [19]. The author [27] obtained an extension of Feinsilver’s result
to homogeneous spaces.

Lévy processes in noncompact semisimgple Lie groups and symmetric spaces exhibit
interesting path limiting properties which are not present for their counterparts in Eu-
clidean spaces. Limiting properties of products of random matrices and random walks
in semisimple Lie groups, which may be regarded as discrete time Lévy processes, were
studied Furstenberg-Kesten [12] (1960), Furstenberg [13] (1963), Tutubalin [40] (1965),
Virtser [42] (1970), Guivarc’h-Raugi [15] (1985), and Raugi [34] (1997). The study of Lim-
iting properties of Brownian motion in semisimple Lie groups and symmetric spaces can
be traced to Dynkin [9] (1961), Orihara [33] (1970) and Malliavin-Malliavin [29] (1972),
and continued in Norris-Rogers-Williams [32] (1986), Taylor [38, 39] (1988, 1991), Babil-
lot [3] (1991) and Liao [24] (1998). Author’s monograph [25] (2004) provides an account
of limiting and dynamical properties of Lévy processes in noncompact semisimple Lie
groups and symmetric spaces.

Probability measures on locally compact groups have been studied extensively. For
a comprehensive treatment, the reader is referred to Heyer’s 1977 classic treatise [18],
which is still an invaluable reference today. Some of more recent developments can be
found in Siebert [36], Pap [31], Dani-McCrudden [7, 8] and Liao [28]. A comprehensive
analysis of probability measures on compact Lie groups can be found in Applebaum’s
recent book [2].

We now briefly describe the content of each section. The formal definition of invariant
Markov processes under group actions is given in the next section §2. Lévy processes
in a topological group G and in a topological homogeneous space G/K are discussed
respectively in sections §3 and §4. Inhomogeneous Lévy processes in G and G/K are



MARKOV PROCESSES AND GROUP ACTIONS 31

considered in §5. In §6 and §7, the decomposition of an invariant Markov process under
a non-transitive action into a radial part and an angular part is introduced, and it is
shown that given the radial part, the conditioned angular part is an inhomogeneous
Lévy process in a standard orbit. This has been done in Liao [27] on Lie groups.

2. Invariant Markov processes under group actions

We now state some general definitions and conventions to be used in this paper, most
of which are also commonly used in the literature. On a topological space X, let B(X)
be its Borel σ-algebra, and let Bb(X) and B+(X) be respectively the spaces of B(X)-
measurable functions that are bounded and nonnegative. A measure µ on X is always
assumed to be defined on B(X) unless when explicitly stated otherwise. For a measurable
function f , the integral

∫
fdµ may be written as µ(f). If µ is a measure on a measurable

space X and if F is a measurable map from X to another measurable space Y , then Fµ
denotes the measure on Y given by Fµ(f) = µ(f ◦F ) for any measurable function f ≥ 0
on Y . This may also be written as Fµ(B) = µ(F−1(B)) for measurable B ⊂ X. A kernel
K from X to Y is a family of measures K(x, ·) on Y , x ∈ X, such that x 7→ K(x,B)
is measurable on X for any measurable B ⊂ Y . It is called a probability kernel, or a
sub-probability kernel, if for all x ∈ X, Kt(x,X) = 1, or K(x,X) ≤ 1.

A topological group G is a group and a topological space such that both the product
map G × G → G, (g, h) 7→ gh, and the inverse map G → G, g 7→ g−1, are continuous.
A continuous action of G on a topological space X is a continuous map G × X → X
given by (g, x) 7→ gx such that g(hx) = (gh)x and ex = x for g, h ∈ G and x ∈ X, where
e is the identity element of G. In the sequel, the action of a topological group G on a
topological space X is always assumed to be continuous unless when explicitly stated
otherwise. The action is called linear if X is a linear space and the map x 7→ gx is linear
for each g ∈ G.

The group action defined above is also called a left action. We may also consider a
right action when the action map is written as (x, g) 7→ xg and satisfies (xg)h = x(gh).
In the sequel, all actions are assumed to be left actions unless when explicitly stated
otherwise.

A function f or a measure µ on X is called invariant under a measurable map g:
X → X, or g-invariant for short, if f ◦ g = f or gµ = µ. An operator T on X with
domain D(T ) being a set of functions on X is map from D(T ) to a possibly different set of
functions on X. It is called g-invariant if ∀f ∈ D(T ), f ◦g ∈ D(T ) and T (f ◦g) = (Tf)◦g.
A kernel K from X to itself may be regarded as an operator Kf(x) = K(x, f) on X with
domain D(K) = B+(X), then it is g-invariant if K(g(x), B) = K(x, g−1(B)) for x ∈ X
and B ∈ B(X).

A function f , a measure µ, an operator T or a kernel K on X is called invariant under
the action of a group G, or G-invariant for short, if it is g-invariant for any g ∈ G.

For g ∈ G, let lg, rg and cg be respectively the left translation, the right translation
and the conjugation map: G → G, defined by lgx = gx, rgx = xg and cgx = gxg−1 for
x ∈ G. The group G acts on itself by left translation and also by conjugation, whereas
the right translation is a right action of G on itself. A function f or a measure µ on G is
called left invariant if it is invariant under the action of G on itself by left translations.
that is, if f ◦ lg = f or lgµ = µ for g ∈ G. Similarly, an operator T on G is called left
invariant if for f ∈ D(T ), f ◦ lg ∈ D(T ) and (Tf) ◦ lg = T (f ◦ lg) for g ∈ G. If this holds
only for g contained in a subgroup K of G, then f , µ or T is called K-left invariant. The
(K-) right invariant and (K-) conjugate invariant functions, measures and operators on
G are defined similarly. When they are both left and right (resp K-left and K-right)
invariant, then they are called bi-invariant (resp. K-bi-invariant).
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Throughout this chapter, let X be a topological space and let G be a topological
group that acts continuously on X, both are equipped with lcscH (locally compact and
second countable Hausdorff) topologies. We will let C(X), Cb(X), Cc(X) and C0(X)
denote respectively the spaces of continuous functions, bounded continuous functions,
continuous functions with compact supports and continuous functions convergent to 0
at infinity (under the one-point compactification topology) on X. Note that C0(X) may
also be characterised as the space of continuous functions f on X such that for any ε > 0,
there is a compact K ⊂ X with |f | < ε on Kc (the complement of K in X).

A family of sub-probability kernels Pt from X to X, t ∈ R+ = [0, ∞), is called a
transition semigroup on X if PtPs = Pt+s for s, t ∈ R+ and P0(x, ·) = δx (the unit mass
at point x). A Markov process xt in X, t ∈ R+, usually means a family of processes, one
for each starting point x ∈ X, associated to a transition semigroup Pt and satisfying the
following simple Markov property: for t > s ≥ 0 and f ∈ Bb(X),

(1) E[f(xt) | Fs] = Pt−sf(xs) P almost surely,

where {Ft} is the natural filtration of process xt. If (1) holds under a larger filtration
{Ft}, a possibly stronger requirement, then xt is called a Markov process associated to
{Ft} or an {Ft}-Markov process. The symbol Px is used to denote the distribution of the
process starting at x on the canonical path space and Ex is the associated expectation.
Occasionally, a Markov process means a single process with a given initial distribution and
this should be clear from context. We will allow a Markov process xt to have a possibly
finite life time as Pt is assumed to be sub-probability, not necessarily a probability kernel.

A family of sub-probability kernels Ps,t from X to X, 0 ≤ s ≤ t < ∞, is called
a two-parameter transition semigroup on X if Pr,sPs,t = Pr,t for any r ≤ s ≤ t and
Pt,t(x, ·) = δx. A (time) inhomogeneous Markov process xt in X is a family of processes,
one for each pair of starting time s ∈ R+ and starting point x ∈ X, associated to a two-
parameter transition semigroup Ps,t and satisfying the following inhomogeneous Markov
property:

(2) E[f(xt) | Fs] = Ps,tf(xs), P -almost surely.

where {Ft} is the natural filtration of process xt. If the above holds for a larger filtration
{Ft}, then the inhomogeneous Markov process xt is said to be associated to {Ft}.

A Markov process xt in X is called invariant under a measurable map g: X → X, or g-
invariant for short, if its transition semigroup Pt, as an operator for each t, is g-invariant,
that is, if

(3) Pt(g(x), B) = Pt(x, g
−1(B))

for any t ∈ R+, x ∈ X and B ∈ B(X). Note that (3) is equivalent to

(4) Egx[f(xt)] = Ex[f(gxt)]

for any t ∈ R+, x ∈ X and f ∈ Bb(X).

Proposition 1. A Markov process xt in X is g-invariant if and only if for any x ∈ X,
the process gxt with x0 = x has the same distribution as the process xt with x0 = gx.

Proof. It is clear that the same distribution implies the g-invariance (4). Now assume (4).
Let {Ft} be the natural filtration of process xt. Then for 0 < t1 < t2 and f1, f2 ∈ Bb(X),
by the simple Markov property,

Egx[f1(xt1)f2(xt2)] = Egx{f1(xt1)Egx[f2(xt2) | Ft1 ]} = Egx[f1(xt1)Pt2−t2f2(xt1)]

= Ex[f1(gxt1)Pt2−t1f(gxt1)] = Ex[f1(gxt1)Pt2−t1(f ◦ g)f(xt1)]

= Ex{f1(gxt1)Ex[f2(gxt2) | Ft1 ]} = Ex[f1(gxt1)f2(gxt2)].
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Inductively, it can be shown that for t1 < t2 < · · · < tn,

Egx[f1(xt1)f2(xt2) · · · fn(xtn)] = Ex[f1(gxt1)f2(gxt2) · · · fn(gxtn)].

This proves the same distribution. �

The g-invariance for an inhomogeneous Markov process xt in X is defined in a similar
fashion. The process xt is called invariant under a measurable map g: X → X, or
g-invariant, if its transition semigroup Ps,t is g-invariant, that is, if

(5) ∀t ≥ s ≥ 0, x ∈ X and B ∈ B(X), Ps,t(gx,B) = Ps,t(x, g
−1(B)).

The following proposition may be proved as Proposition 1.

Proposition 2. An inhomogeneous Markov process xt is g-invariant if and only if for
all s ∈ R+ and x ∈ X, the process gxt, t ≥ s, with xs = x has the same distribution as
process xt, t ≥ s, with xs = gx.

A Markov process xt in X is called invariant under the action of a group G, or G-
invariant, if its transition semigroup Pt is g-invariant for any g ∈ G. Similarly, an
inhomogeneous Markov process xt in X is called G-invariant if its transition semigroup
Ps,t is G-invariant.

A process is said to have rcll paths, or called a rcll process, if almost all its paths are
right continuous with left limits in its state space. In literature, a rcll process is often
called càdlàg (French “continue à droite, limite à gauche”). Most processes in this work
will be assumed to be rcll. We will see in Remarks 5, 15, 21 and 28 that many of these
processes in fact have rcll versions if they are continuous in distribution.

A Markov process xt in X is called a Feller process if its transition semigroup Pt is
Feller, that is, if for any f ∈ C0(X), Ptf ∈ C0(X) and Ptf → f pointwise on X as t→ 0,
noting that this in fact implies that Ptf → f uniformly on X. A Feller process has a
rcll version, so it will be assumed to be rcll, and it has many other useful properties,
including the strong Markov property. See for example [21, Chapter 19] for more details.

3. Lévy processes in topological groups

A Markov process xt in a topological group G invariant under the action of G on itself
by left translation is called left invariant. Its transition semigroup Pt is left invariant in
the sense that

(6) Pt(f ◦ lg)(x) = Ptf(gx)

for t ∈ R+, x, g ∈ G and f ∈ Bb(G).
Let xt be a rcll left invariant Markov process in G. Recall e is the identity element of

G. Then Ptf(x) = Pt(f ◦ lx)(e) = Ee[f(xxt)]. By the rcll paths, one sees that Pt is a
Feller transition semigroup, and hence xt is a Feller process.

Let xt be a process in G with an infinite life time, and let {Fxt } be its natural filtration.
It is said to have independent increments if for s < t, x−1

s xt is independent of Fxs . It is
said to have stationary increments if for s < t, the distribution of x−1

s xt depends only
on t − s, that is, if x−1

s xt and x−1
0 xt−s have the same distribution. A rcll process xt is

called a Lévy process in G if it has independent and stationary increments.
The classical example is a Lévy process xt in the d-dim Euclidean space Rd when Rd

is regarded as an additive group. In this case, the increment x−1
s xt is written as xt− xs.

For a Lévy process xt in G, let

(7) xet = x−1
0 xt.

It is clear that process xet is also a Lévy process in G starting at e and is independent of
x0.



34 MING LIAO

Let xt be a Lévy process in G. For t ∈ R+, x ∈ G and f ∈ Bb(G), put

(8) Ptf(x) = E[f(xxet )].

It is easy to see that this defines a transition semigroup Pt on G, which is conservative,
that is, Pt1 = 1, and is left invariant.

For t > s,

E[f(xt) | Fs] = E[f(xsx
−1
s xt) | Fs] = E[f(xxet−s)] |x=xs= Pt−sf(xs).

This shows that the Lévy process xt is a left invariant Markov process.
Now let xt be a rcll left invariant Markov process in G with an infinite life time. Then

for t > s and f ∈ Bb(G),

E[f(x−1
s xt) | Fs] = E[f(x−1xt) | Fs] |x=xs= Pt−s(f ◦ lx−1

s
)(xs) = Pt−sf(e).

This shows that xt has independent and stationary increments, and hence is a Lévy pro-
cess. We have proved that the class of Lévy processes in G coincides with the class of
left invariant rcll Markov processes in G with infinite life times.

Let xt be a left invariant rcll Markov process in G with a possibly finite life time.
Then Pt1(x) = Pt(1 ◦ lx)(e) = Pt1(e), which is right continuous in t due to the right
continuity of paths. By the semigroup property and the left invariance of Pt, Ps+t1(e) =∫
Ps(e, dx)Pt1(x) = Ps1(e)Pt1(e). It follows that Pt1(x) = e−λt for all x ∈ G and for

some fixed λ ≥ 0. Let P̂t = eλtPt. It is easy to see that P̂t is a conservative and left
invariant Feller transition semigroup. The Feller process x̂t associated to P̂t is a left
invariant rcll Markov process with an infinite life time, and hence is a Lévy process. Let
τ be an exponential random variable of rate λ (τ = ∞ if λ = 0) that is independent of
process x̂t, and let x′t be the process x̂t killed at time τ , that is, x′t = x̂t for t < τ and
x′t = ∆ for t ≥ τ , where ∆ is the point at infinity (see Appendix A.3). It is easy to show
that x′t is a rcll Markov process with transition semigroup Pt and hence is identical in
distribution to process xt. To summarize, we have proved the following result.

Theorem 3. A left invariant rcll Markov process in G with an infinite life time is a
Lévy process. Conversely, a Lévy process xt in G is a left invariant rcll Markov process
with an infinite life time and its transition semigroup is given by (8).

In general, a left invariant rcll Markov process xt in G with a possibly finite life
time is a Feller process and is identical in distribution to a Lévy process x̂t killed at an
independent exponential time of rate λ ≥ 0. The transition semigroup Pt of xt and P̂t of
x̂t are related as Pt = e−λtP̂t.

Remark 4. Let xt be a process in G with an infinite life time. The above proof shows
that xt is a left invariant Markov process if and only if it has independent and stationary
increments.

Remark 5. Let xt be a left invariant Markov process in G without assuming an in-
finite life time, and let Pt be its transition semigroup. Then Ptf(x) = Pt(f ◦ lx)(e) =∫
G
f(xy)µt(dy), where µt = Pt(e, ·). If µt → δe (the unit point mass at e) weakly as

t → 0, then Pt is Feller and hence xt has a rcll version. Therefore, if xt also has an
infinite life time, then after a modification on a null set for each t ≥ 0, xt becomes a
Lévy process in G.

Given a filtration {Ft} on the underlying probability space (Ω,F , P ). A Lévy process
xt is called associated to {Ft}, or an {Ft}-Lévy process, if it is adapted to {Ft} and for
any s < t, x−1

s xt is independent of Fs. A Lévy process is clearly associated to its natural
filtration. By the proof of Theorem 3, it is easy to see that a Lévy process is associated
to a filtration if and only if it is associated to the same filtration as a Markov process.
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It is easy to see that if xt is a Lévy process associated to a filtration {Ft} and if s > 0 is
fixed, then x′t = x−1

s xs+t is a Lévy process identical in distribution to the process xet and
is independent of Fs. The following theorem says that s may be replaced by a stopping
time.

Theorem 6. Let xt be a Lévy process associated to a filtration {Ft} in G. If τ is an {Ft}-
stopping time with P (τ < ∞) > 0, then under the conditional probability P (· | τ < ∞),
the process x′t = x−1

τ xτ+t is a Lévy process in G that is independent of Fτ . Moreover,
the process x′t under P (· | τ <∞) has the same distribution as the process xet under P .

Proof. First assume τ takes only discrete values. Fix 0 < t1 < t2 < · · · < tk, φ ∈ Cb(Gk)
and ξ ∈ (Fτ )+. Because ξ1[τ=t] ∈ (Ft)+, where 1A denotes the indicator of set A, we
have

E[φ(x−1
τ xτ+t1 , · · · , x−1

τ xτ+tk)ξ | τ <∞]

=
∑
t<∞

E[φ(x−1
t xt+t1 , · · · , x−1

t xt+tk)ξ1[τ=t]]/P (τ <∞)

=
∑
t<∞

E[φ(x−1
t xt+t1 , · · · , x−1

t xt+tk)]E(ξ1[τ=t])/P (τ <∞)

= E[φ(x−1
0 xt1 , · · · , x−1

0 xtk)]E(ξ | τ <∞)(9)

Setting ξ = 1 yields E[φ(x−1
τ xτ+t1 , · · · , x−1

τ xτ+tk) | τ <∞] = E[φ(x−1
0 xt1 , · · · , x−1

0 xtk)].
Therefore, for a general ξ ∈ (F0

τ )+, the expression in (9) is equal to

E[φ(x−1
τ xτ+t1 , · · · , x−1

τ xτ+tk) | τ <∞]E(ξ | τ <∞).

This proves the desired result for a discrete stopping time τ .
For a general stopping time τ , let τn = (k+1)2−n on the set [k ·2−n ≤ τ < (k+1)2−n]

for k = 0, 1, 2, . . .. Then τn are discrete stopping times and τn ↓ τ as n ↑ ∞. The result
for τ follows from the discrete case and the right continuity of xt. �

The convolution of two measures µ and ν on G is the measure µ ∗ ν on G determined
by

(10) µ ∗ ν(f) =

∫
f(xy)µ(dx)ν(dy)

for f ∈ B+(G), and it is a probability measure if so are µ and ν. It is easy to check
that the convolution is associative, that is, (µ ∗ ν) ∗ γ = µ ∗ (ν ∗ γ), and hence, it is
meaningful write a convolution product µ1 ∗ µ2 ∗ · · · ∗ µn or an n-fold convolution power
µ∗n = µ ∗ µ ∗ · · · ∗ µ.

A family of probability measures µt on G, t ≥ 0, is called a convolution semigroup on
G if µs+t = µs ∗ µt. Although convolution semigroup may be defined for more general
measures, in this work, a convolution semigroup will always mean a family of probability
measures. It is called continuous if µt → µ0 weakly as t→ 0. By [18, Theorem 1.5.7], if
µt is continuous, then µt → µs weakly as t → s for all s > 0. An alternative proof will
be given shortly.

Let xt be a Lévy process in G. It is easy to see that Pt(e, ·), the distributions µt of
xet , t ≥ 0, form a continuous convolution semigroup of probability measures on G (the
continuity follows from the right continuity of paths) with µ0 = δe, which will be called
the convolution semigroup associated to the Lévy process gt. On the other hand, if µt is
a continuous convolution semigroup on G with µ0 = δe, then

(11) Ptf(x) = µt(f ◦ lx),

for f ∈ C0(G), defines a left invariant conservative Feller transition semigroup Pt on
G. There is a Feller process xt associated to Pt, which is left invariant, and hence is a
Lévy process with µt as the associated convolution semigroup.
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Because xt is a Feller process, it is stochastically continuous, that is, xt = xt− almost
surely for all t > 0 (see for example ([21, Proposition 25.20]). It follows that µt is in fact
continuous in t under the weak convergence, as mentioned before.

To summarize, we have the following result.

Theorem 7. For a Lévy process xt in G, the distributions µt of xet = x−1
0 xt form a con-

tinuous convolution semigroup on G with µ0 = δe. conversely, if µt is such a convolution
semigroup on G, then there is a Lévy process xt in G with µt as distribution of xet .

Using the Markov property, is easy to show that the finite dimensional distributions
of a Lévy process xt in G with associated convolution semigroup µt are given by

E[f(xt1 , xt2 . . . , xtn)] =

∫
f(x0x1, x0x1x2, . . . , x0x1x2 · · ·xn)

µ0(dx0)µt1(dx1)µt2−t1(dx2) · · ·µtn−tn−1
(dxn)(12)

for f ∈ Bb(Xn) and 0 ≤ t1 < t2 < · · · < tn, where µ0 is the initial distribution.

Remark 8. In the definition of Lévy processes, if the increments x−1
s xt for s < t are

replaced by xtx
−1
s , this will lead to a different definition of Lévy processes, which co-

incide with Markov processes in G that are invariant under right translations. In [25],
the Lévy processes defined earlier and defined here are called respectively left and right
Lévy processes. Because the group G is in general non-commutative, left and right
Lévy processes are two different classes of processes, but they are in natural duality
under the map xt 7→ x−1

t . All the preceding results established for left Lévy processes
hold also for right Lévy processes with suitable changes. For example, xet = x−1

0 xt should
be changed to xet = xtx

−1
0 and (11) holds with lx replaced by rx. Note that a contin-

uous convolution semigroup µt on G with µ0 = δe can be used to generate either a left
Lévy process by (11) or a right Lévy process by the counter part of (11) with lx replaced
by rx.

In this paper, we will exclusively consider left Lévy processes, unless when explicitly
stated otherwise, and we will omit the adjective “left” in its name.

4. Lévy process in topological homogeneous spaces

Let X be a topological space and let G be a topological group that acts transitively on
X, both are equipped with lcscH topologies. Fix a point o in X. The isotropy subgroup
K of G at o, defined by K = {g ∈ G; go = o}, is a closed subgroup of G.

For any closed subgroup K of G, the space G/K of left cosets gK, g ∈ K, is called
a homogeneous space of G. It is equipped with the quotient topology, under which the
natural projection

π : G → G/K, g 7→ gK,

is continuous and open. Under this topology, the natural action of G on G/K, given by
xK 7→ gxK for g ∈ G, is continuous. Moreover, when K is the isotropy subgroup at
o ∈ X as defined above, then under the map: gK 7→ go, G/K is homeomorphic to X,
and the G-action on X is just the natural action of G on G/K (see Theorem 3.2 in [16,
chapter II]).

We may identify X and G/K together with the associated G-actions in this way.
Under this identification, the natural projection π: G → G/K is just the map: G → X
given by g 7→ go, where o = eK.

Note that if G is a topological group with a lcscH topology, and if K is a compact
subgroup, then the homogeneous space X = G/K, under the quotient topology, is a
lcscH space.

In the rest of this section, we will assume K is compact. We will also assume the
homogeneous space G/K has a continuous local section in the sense that there are a
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neighborhood U of o in X and a continuous map φ: U → G such that π ◦ φ = idU (the
identity map on U). Because the isotropy subgroup at a different point go, g ∈ G, is
gKg−1, it can be shown that these assumptions are independent of the choice for the
point o ∈ X. Under these assumptions, it can be shown that the map: (x, k) 7→ φ(x)k is
a homeomorphism from U×K onto a neighborhood of e of G. Some sufficient conditions
for the existence of a continuous local section map may be found in [22, 30], and see also
[22] for some non-existence examples.

It is well known and also easy to see that a continuous local section, even a smooth
local section, exists if G is a Lie group. By Theorems 4.6 and 4.7, and Corollary 4.8 in
[23, Chapter I], the group G of isometries on a connected Riemannian manifold X has a
Lie group structure and acts smoothly on X, and the isotropy subgroup K of G at any
o ∈ X is compact. In this case, if G acts transitively on X, then X = G/K satisfies all
the assumptions stated here.

A measurable map S: X → G is called a section map on X if π ◦ S = idX . By the
existence of a continuous local section, one can always construct a section map on X. In
general, it may not be continuous on X, but for any x ∈ X, there is a section map that
is continuous on a neighborhood of x (even smooth there when G is a Lie group).

A measure on a lcscH space is called a Radon measure if it has a finite charge on
any compact set. Note that the usual definition of Radon measures on Hausdorff spaces
includes a regularity condition, which is automatically satisfied on a lcscH space. It is
well known that on a topological group G equipped with a lcscH topology, there is a
nontrivial left (resp. right) invariant Radon measure µ, called a left (resp. right) Haar
measure on G, which is unique up to a multiplicative constant. In general, left Haar
measures do not agree with right Haar measures, but when they do, the group G is
called unimodular. In this case, we will simply say Haar measures. It is easy to show (by
applying right translations and the inverse map to a left Haar measure) that a compact
group K is unimodular and there is a unique left invariant probability measure on K,
which is also invariant under right translations and the inverse map on K. This measure
is called the normalized Haar measure on the compact group K, and is denoted as ρK
or simply dk in computation.

The convolution between two measures µ and ν on X is the measure µ ∗ ν defined by

(13) µ ∗ ν(f) =

∫
X×X

∫
K

f(S(x)ky)dkµ(dx)ν(dy),

for any f ∈ B+(X). This definition does not depend on the choice for the section map
S (because if S′ is another section map, then S′(x) = S(x)kx for some kx ∈ K), and
reduces to the convolution on G when K = {e}. Because for any g ∈ G and x ∈ X,
S(gx) = gS(x)k for some k = k(g, x) ∈ K, it is easy to show that the convolution on
X, as on G, is associative, that is, (µ ∗ ν) ∗ γ = µ ∗ (ν ∗ γ), so the n-fold convolution
µ1 ∗ µ2 ∗ · · · ∗ µn is well defined.

Recall a measure µ on X is called K-invariant if kµ = µ for any k ∈ K. If ν is a
K-invariant measure on X, then µ ∗ ν can be written a little more concisely as

(14) µ ∗ ν(f) =

∫
X×X

f(S(x)y)µ(dx)ν(dy)

for f ∈ B+(X), which does not depend on the choice for the section map S. Moreover,
if µ is also K-invariant, then so is µ ∗ ν.

A convolution semigroups on X and its continuity are defined in the same way as
on G given in §3. Thus, a family of probability measures µt on X, t ∈ R+, is called a
convolution semigroup on X if µs+t = µs ∗ µt, and it is called continuous if µt → µ0

weakly as t → 0. Recall that if µt is a continuous convolution semigroup on G, then
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µt → µs weakly as t → s for any s > 0. The same holds for a continuous convolution
semigroup µt on X, as an easy consequence of Proposition 12 later.

The following result provides a basic relation between invariant measures on G and
on X = G/K. Recall a measure µ on G is called K-left or K-right invariant if lkµ = µ
or rkµ = µ for k ∈ K, and K-bi-invariant if it is both K-left and K-right invariant.

Proposition 9. The map

µ 7→ ν = πµ

is a bijection from the set of K-right invariant measures µ on G onto the set of measures
ν on X. It is also a bijection from the set of K-bi-invariant measures µ on G onto the
set of K-invariant measures ν on X. Moreover, if ν is a measure on X, then the unique
K-right invariant measure µ on G satisfying ν = πµ is given by

(15) ∀f ∈ B+(G), µ(f) =

∫
X

∫
K

f(S(x)k)dk ν(dx),

where S is any section map on X. Furthermore, the map µ → πµ preserves the convo-
lution in the sense that for any measures µ1 and µ2 on G,

(16) π(µ1 ∗ µ2) = (πµ1) ∗ (πµ2),

provided one of the following three conditions holds: µ1 is K-right invariant, or µ2 is
K-left invariant, or µ2 is K-conjugate invariant.

Proof. For g ∈ G, S ◦ π(g) = gk for some k ∈ K. If µ is a K-right invariant measure on
G with πµ = ν, then for f ∈ B+(G),

µ(f) =

∫
K

µ(f ◦ rk)dk =

∫
K

µ(f ◦ rk ◦ S ◦ π)dk =

∫
K

ν(f ◦ rk ◦ S)dk.

This shows that µ satisfies (15). Conversely, using the K-right invariance of dk, it is
easy to show that µ given by (15) is K-right invariant with πµ = ν. It is also clear that
µ is K-bi-invariant if and only if ν is K-invariant. For two measures µ1 and µ2 on G,
satisfying one of the three conditions stated above, let ν1 = πµ1 and ν2 = πµ2. Then for
f ∈ B+(X),

π(µ1 ∗ µ2)(f) =

∫
f(π(g1g2))µ1(dg1)µ2(dg2)

=

∫
f(π(g1kg2))µ1(dg1)ρK(dk)µ2(dg2)

=

∫
f(g1kπ(g2))µ1(dg1)ρK(dk)µ2(dg2) =

∫
f(gky)µ1(dg)ρK(dk)ν2(dy)

=

∫
f(S(π(g))k′ky)µ1(dg)ρK(dk)ν2(dy) (for some k′ ∈ K)

=

∫
f(S(x)ky)ν1(dx)ρK(dk) ν2(dy) = ν1 ∗ ν2(f).

�

Proposition 10. Let ρG be a left Haar measure on G.
(a) ρG is K-right invariant.
(b) ρX = πρG is a G-invariant measure on X = G/K, and any G-invariant measure
on X is cρX for some constant c ≥ 0. In particular, if G is compact and if ρG is the
normalized Haar measure on G, then ρX is the unique G-invariant probability measure
on X.
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Proof. For k ∈ K, rkρG is left invariant and so rkρG = λ(k)ρG for some λ(k) > 0.
For f ∈ Cc(G), ρG(f ◦ rk) = λ(k)ρG(f). This shows k 7→ λ(k) is continuous. Then
k 7→ λ(k−1) is a continuous group homomorphism from K into the multiplicative group
(0, ∞). Its range as a compact subgroup is necessarily {1}, and hence rkρG = ρG. This
proves (a). It is clear that ρX = πρG is G-invariant. For any G-invariant measure ν on
X, the unique K-right invariant measure µ on G with πµ = ν, given by (15), is clearly
left invariant, and so µ = cρG for some constant c ≥ 0. This implies ν = cρX and proves
(b). �

In the literature (for example, in [14]), the convolution of measures in X = G/K has
been defined by identifying the measures on X with the K-right invariant measures in G
and then use the convolution on G. By Proposition 9, this definition is consistent with
our definition given in (13).

Convolution of functions on X = G/K have appeared in literature under various
contexts, but in the present setting, they all take the following form (see for example
[41]): For f1, f2 ∈ B+(X),

(17) f1 ∗ f2(gK) =

∫
G

f1(hK)f2(h−1gK)ρ(dh), g ∈ G,

where ρ denotes a left Haar measure on G. This definition is compatible with our
definition of convolution of measures on X by the following proposition.

Proposition 11. If µ1 and µ2 are measures on X = G/K with densities f1 and f2 with
respect to πρ, then µ1 ∗ µ2 has density f1 ∗ f2.

Proof. By Proposition 10 (a), ρ is K-right invarint. For f ∈ B+(X), writing dg and dh
for ρ(dg) and ρ(dh) respectively,

µ1 ∗ µ2(f) =

∫
f(S(x)ky)dkµ(dx)ν(dy) =

∫
f(S(hK)kgK)dkf1(hK)f2(gK)dhdg

=

∫
f(hgK)f1(hK)f2(gK)dhdg =

∫
G

f(gK)[

∫
G

f1(hK)f2(h−1gK)dh]dg

=

∫
f(gK)(f1 ∗ f2)(gK)dg.

�

A probability measure µ on G satisfying µ ∗ µ = µ is called an idempotent. By [18,
Theorem 1.2.10], if µ is an idempotent, then µ = ρH for some compact subgroup H of
G. For a convolution semigroup µt on G, µ0 ∗ µ0 = µ0, so µ0 = ρH for some compact
subgroup H of G. Then µt is H-bi-invariant because µt = µ0 ∗ µt = µt ∗ µ0.

Proposition 12. (a) If a convolution semigroup µt on G is K-right invariant, that is,
if each µt is K-right invariant, then it is K-bi-invariant.
(b) If νt is a convolution semigroup on X = G/K, then each νt is K-invariant, and
ν0 = πρH for some compact subgroup H of G containing K.
(c) The map

µt 7→ νt = πµt

is a bijection from the set of K-bi-invariant convolution semigroups µt on G onto the set
of convolution semigroups νt on X = G/K. Moreover, µt is continuous if and only if so
is νt.

Proof. By the preceding discussion, µ0 = ρH and µt is H-bi-invariant for some compact
subgroup H of G. The K-right invariance of µ0 implies K ⊂ H. This proves (a).
Let νt be a convolution semigroup on X, and let µt be the unique K-right invariant
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probability measure on G with πµt = νt. By Proposition 9 and (a), µt is a K-bi-
invariant convolution semigroup on G, and hence νt = πµt is K-invariant. Moreover,
µ0 = ρH for some compact subgroup H of G. Because µ0 is K-bi-invariant, K ⊂ H.
This proves (b). Now (c) follows from (b) and Proposition 9. Note that to derive the
continuity of µt from that of νt, (15) is used, where

∫
K
f(S(x)k)ρK(dk) is continuous in

x if f is bounded continuous on G. This is because the integral does not depend on S,
and S may be chosen to be continuous near any x (that is, in a neighborhood of x). �

Because a left invariant rcll Markov process in G with an infinite life time is a
Lévy process in G, a G-invariant rcll Markov process xt in X = G/K with an infi-
nite life time will be called a Lévy process in X. Let Pt be its transition semigroup. By
the G-invariance of Pt, it is clear that µt = Pt(o, ·), t ∈ R+, are K-invariant measures.
We now show that they form a continuous convolution semigroup on G with µ0 = δo,
which will be called the convolution semigroup associated to the Lévy process xt. For
f ∈ Bb(X) and s, t ∈ R+,

µs+t(f) = Ps+tf(o) = PsPtf(o) =

∫
X

µs(dx)Ptf(x) =

∫
X

µs(dx)Ptf(S(x)o)

=

∫
X

µs(dx)Pt(f ◦ S(x))(o) (by the G-invariance of Pt)

=

∫
X×X

µs(dx)µt(dy)f(S(x)y) = µs ∗ µt(f).

This shows that µt = Pt(o, ·), t ∈ R+, form a convolution semigroup on X, which is
continuous by the right continuity of xt.

On the other hand, given a continuous convolution semigroup µt on X with µ0 = δo,
let

(18) Ptf(x) =

∫
f(S(x)y)µt(dy)

for t ∈ R+, x ∈ X and f ∈ B+(X). Because µt is K-invariant, this expression does
not depend on the choice for the section map S, and defines a conservative G-invariant
Feller transition semigroup Pt on X (recall that S may be chosen to be continuous near
any point in X). The associated Feller process xt is a G-invariant rcll Markov process
with an infinite life time, and hence is a Lévy process in X with µt as the associated
convolution semigroup.

For a G-invariant rcll Markov process xt in X with a possibly finite life time, it can
be shown as on G that its transition semigroup Pt satisfies Pt1(x) = e−λt for some
λ ≥ 0, and hence xt is equal in distribution to a Lévy process killed at an independent
exponential time of rate λ. To summarize, we have the following result.

Theorem 13. Let xt be a Lévy process in X = G/K, that is, a G-invariant rcll Markov
process with an infinite life time, and let Pt be its transition semigroup. Then µt = Pt(o, ·)
is a continuous convolution semigroup on X with µ0 = δo. conversely, if µt is such a
convolution semigroup on X, then there is a Lévy process xt in X with x0 = o such that
µt is the distribution of xt.

In general, a G-invariant rcll Markov process xt in X with a possibly finite life time
is identical in distribution to a Lévy process x̂t in X killed at an independent exponential
time of rate λ ≥ 0. The transition semigroup Pt of xt and P̂t of x̂t are related as
Pt = e−λtP̂t.
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Although there is no natural product structure on the homogeneous space X = G/K,
the integrals like ∫

f(xy)µ(dy) =

∫
f(S(x)y)µ(dy),∫

f(xy, xyz)µ(dy)ν(dz) =

∫
f(S(x)y, S′(S(x)y)z)µ(dy)ν(dz)(19)

=

∫
f(S(x)y, S(x)S′(y)z)µ(dx)ν(dy),

are well defined for K-invariant measures µ and ν on X, that is, they do not depend on
the choice for section maps S and S′, noting that S′(S(x)y) = S(x)S′(y)kx,y for some
kx,y ∈ K. In this notation, the formula (12) for the finite dimensional distributions of a
Lévy process in G holds also for a Lévy process xt in X = G/K. This follows from the
Markov property of xt and (18).

The following result says that a Lévy process in X may also be characterized by
independent and stationary increments, just like a Lévy process in G.

Theorem 14. Let xt be a rcll process in X = G/K with an infinite life time and let {Fxt }
be its natural filtration. If xt is a Lévy process with associated convolution semigroup µt,
then for any section map S and s < t, x−1

s xt = S(xs)
−1xt is independent of Fxs and

has distribution µt−s. Consequently, this distribution is K-invariant, and depends only
on t − s and not on the choice of S. Conversely, if for some section map S and any
s < t, x−1

s xt = S(xs)
−1xt is independent of Fxs , and its distribution is K-invariant and

depends only on t− s, then xt is a Lévy process in X.

Proof. Let xt be a Lévy process in X with associated convolution semigroup µt. Then
from its finite dimensional distributions given in (12), it can be shown that x−1

s xt =
S(xs)

−1xt is independent of Fxs and its distribution is µt−s. For simplicity, we will prove
that for r < s < t, x−1

s xt is independent of xr and has distribution µt−s. Fix an arbitrary
section map S, we will write x1x2 · · ·xk−1xk for S(x1)S(x2) · · ·S(xk−1)xk, and x−1 for
S(x)−1. By (12), for f, g ∈ B+(X),

E[f(xr)g(x−1
s xt)]

=

∫
µ0(dx0)µr(dx1)µs−r(dx2)µt−s(dx3)f(x0x1)g((x0x1x2)−1x0x1x2x3))

=

∫
µ0(dx0)µr(dx1)µs−r(dx2)µt−s(dx3)f(x0x1)g(x3)

= E[f(xr)]E[g(xt−s)].

This shows that S(xs)
−1xt is independent of xr and has the distribution µt−s. There is

no difficulty in this proof to replace xr by (xr1 , xr2 , . . . , xrk) for r1 < r2 < · · · < rk ≤ s,
except the expressions will be much longer. Conversely, assume for some section map S
and any s < t, x−1

s xt = S(xs)
−1xt is independent of Fxs , and its distribution, denoted

as µs,t, is K-invariant and depends only on t− s. Then for f ∈ B+(X),

E[f(xt) | Fxs ] = E[f(S(xs)S(xs)
−1xt) | Fxs ] =

∫
X

f(S(xs)y)µs,t(dy)

=

∫
X

f(S(xs)y)µ0,t−s(dy).

Because µs,t is K-invariant, by (14), µr,s ∗µs,t = µr,t for r < s < t. Because µs,t depends
only on t−s, it then is easy to show that µt = µ0,t is a continuous convolution semigroup
on G and xt is a G-invariant Markov process in X with associated convolution semigroup
µt, and hence xt is a Lévy process in X. �
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We note that by Theorem 14, for a Lévy process xt in X and a section map S on X,

(20) xot = S(x0)−1xt

is a Lévy process in X with xo0 = o and is independent of x0, and its distribution does not
depend on the choice for S. Moreover, the process xt is equal in distribution to S(x0)xot .

Remark 15. Let xt be a G-invariant Markov process in X = G/K with transition
semigroup Pt and let µt = Pt(o, ·). Then Ptf(x) = Pt(f ◦ S(x))(e) =

∫
G
f(S(x)y)µt(dy).

If µt → δo weakly as t → 0, then Pt is Feller and hence xt has a rcll version. In this
case, if xt has an infinite life time, then this version of xt is a Lévy process, and µt is a
continuous convolution semigroup on X.

The following three results deal with some simple relations between processes in G
and in X = G/K.

Proposition 16. Let gt be a Markov process in G. Assume its transition semigroup Pt
is K-right invariant, that is, (Ptf) ◦ rk = Pt(f ◦ rk) for f ∈ Bb(G) and k ∈ K. Then
xt = π(gt) = gto is a Markov process in X = G/K with transition semigroup

(21) Qtf(x) = Pt(f ◦ π)(S(x)), x ∈ X and f ∈ Bb(X),

which does not depend on the choice for the section map S. Moreover, if gt is a Feller
process in G, then so is xt in X.

Proof. The K-right invariance of Pt shows that Qt defined by (21) does not depend on
the choice for S. Note that (21) may be written as (Qtf) ◦ π = Pt(f ◦ π). Then

Qs+tf(x) = Ps+t(f ◦ π)(S(x)) = Ps[Pt(f ◦ π)](S(x)) = Ps[(Qtf) ◦ π](S(x))

= (QsQtf) ◦ π(S(x)) = QsQtf(x).

This shows that Qt is a transition semigroup. Since S may be chosen to be continuous
near any fixed point x in X, it is easy to see that if Pt is a Feller transition semigroup
on G, then so is Qt on X. The Markov property of xt follows from E[f(xs+t) | Fgs ] =
E[f ◦ π(gs+t) | Fgs ] = Pt(f ◦ π)(gs) = (Qtf) ◦ π(gs) = Qtf(xs). �

Proposition 17. Let gt be a right Lévy process in G as defined in Remark 8, that is, a rcll
Markov process with a right invariant transition semigroup Pt and an infinite life time.
Let µt = Pt(e, ·) be the associated convolution semigroup. Then for any z ∈ X = G/K,
xt = gtz is a Feller process in X with transition semigroup Qt given by (21). Moreover,

(22) Qtf(x) =

∫
G

f(gx)µt(dg), x ∈ X and f ∈ Bb(X).

Proof. Because gt = get g0 and gtz = get g0z, replacing z by g0z, we may assume g0 = e. If
the reference point o in X is replaced by z, then the natural projection π: G→ X given
by g 7→ go should be replaced by πz: G → X given by g 7→ gz. If S is a section map
on X with respect to o, then Sz(·) = S(·)S(z)−1 is a section with respect to z because
Sz(x)z = S(x)S(z)−1z = S(x)o = x for any x ∈ X. Because Pt is right invariant, by
Proposition 16, xt = gtz is a Feller process in X with transition semgroup

Qtf(x) = Pt(f ◦ πz)(S(x)S(z)−1) = Pt(f ◦ πz ◦ rS(x)S(z)−1)(e)

=

∫
G

Pt(e, dg)f(gS(x)S(z)−1z) =

∫
G

µt(dg)f(gS(x)o) =

∫
G

µt(dg)f(gx).

This proves (22). From above, Qtf(x) =
∫
G
µt(dg)f(gS(x)o) =

∫
G
Pt(e, dg)f(gS(x)o) =∫

G
Pt(S(x), dg)f(go) = Pt(f ◦ π)(S(x)). This is (21). �
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Recall that for g ∈ G, cg: G→ G is the conjugation map x 7→ gxg−1. A Lévy process
gt in G is called K-conjugate invariant if its transition semigroup is K-conjugate invari-
ant, that is, if Pt(f ◦ ck) = (Ptf) ◦ ck for f ∈ Bb(G) and k ∈ k. By the left invariance of
Pt, this is equivalent to the K-right invariance of Pt. In terms of the process, this is the
same as saying that for any t ∈ R+ and k ∈ K, kget k

−1 = get in distribution.

Theorem 18. Let gt be an K-conjugate invariant Lévy process in G. Then xt = gto is
a Lévy process in X = G/K with transition semigroup Qt given by (21).

Note: It can be shown that any Lévy process in X = G/K may be obtained from an
K-conjugate invariant Lévy process in G as in Theorem 18 when G is a Lie group, see
[25, Theorem 2.2].

Proof of Theorem 18. By Proposition 16, xt = gto is a rcll Markov process in X with
transition semigroup Qt and infinite life time. It remains to show that Qt is G-invariant.
This follows from the left invariance and K-right invariance of Pt, because for f ∈ Bb(X)
and g ∈ G, Qt(f ◦ g)(x) = Pt(f ◦ g ◦π)(S(x)) = Pt(f ◦π ◦ lg)(S(x)) = Pt(f ◦π)(gS(x)) =
Pt(f ◦ π)(S(gx)k) (for some k ∈ K) = Pt(f ◦ π ◦ rk)(S(gx)) = Pt(f ◦ π)(S(gx)) =
Qtf(gx). �

5. Inhomogeneous Lévy processes

As before, let G be a topological group equipped with a lcscH topology. An inhomo-
geneous Markov process xt in G with transition semigroup Ps,t is called left invariant if
it is invariant under the action of left translations, that is, if Ps,t(f ◦ lg) = (Ps,tf) ◦ lg for
g ∈ G and f ∈ Bb(G).

Assume xt has an infinite life time. By the simple Markov property and the left
invariance, for s < t and f ∈ Bb(G),

E[f(x−1
s xt) | Fxs ] = Ps,t(f ◦ lx−1

s
)(xs) = Ps,tf(e).

This shows that x−1
s xt is independent of Fxs and has the distribution Ps,t(e, ·). Thus,

like a left invariant homogeneous Markov process considered in §3, xt has independent
increments. However, these increments are in general not stationary.

A rcll process xt in G, with an infinite life time and independent increments, will be
called an inhomogeneous Lévy process. In contrast, the Lévy processes defined in §3 may
be called homogeneous. Note that the class of inhomogeneous Lévy processes includes
homogeneous ones as special cases. As for homogeneous Lévy processes, it is easy to
show that an inhomogeneous Lévy process xt is a left invariant inhomogeneous Markov
process. To summarize, we have the following result.

Theorem 19. The class of left invariant inhomogeneous Markov processes in G, that
have rcll paths and infinite life times, coincides with the class of inhomogeneous Lévy pro-
cesses in G. For such a process xt with transition semigroup Ps,t, Ps,t(e, ·) is the distri-
bution of the increment x−1

s xt, 0 ≤ s ≤ t.

A family of probability measures µs,t on G, 0 ≤ s ≤ t, is called a two-parameter
convolution semigroup on G if µr,t = µr,s ∗µs,t for r ≤ s ≤ t. It is called right continuous
if µs,t → µu,v weakly as s ↓ u and t ↓ v. It is called continuous if µs,t is continuous in
(s, t) under the weak convergence. Note that if µt is a continuous convolution semigroup,
then µs,t = µt−s is a continuous two-parameter convolution semigroup. For simplicity, a
two-parameter convolution semigroup may also be called a convolution semigroup.

It is easy to see that if xt is an inhomogeneous Lévy process in G, then by the rcll
paths, the distributions µs,t of its increments x−1

s xt, s ≤ t, form a right continuous
convolution semigroup with µt,t = δe for all t ≥ 0, which is called the convolution
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semigroup associated to process xt. Moreover, µs,t is continuous if and only if xt is
stochastically continuous.

Now let µs,t be a continuous (two-parameter) convolution semigroup on G with µt,t =
δe. For u, t ∈ R+, x ∈ G and f ∈ C0(R+ ×G), let

(23) Rtf(u, x) =

∫
G

f(u+ t, xy)µu,u+t(dy).

It is easy to show that this defines a conservative Feller transition semigroup Rt on the
product space R+ ×G. Let zt be the associated Feller process in R+ ×G. Then zt has
an infinite life time, and given z0 = (u, x), zt = (u + t, yt) is such that for f ∈ Cc(G),
E(u,x)[f(yt)] =

∫
G
f(xy)µu,u+t(dy). Let xt = yt−u for t ≥ u. Then xt is a left invariant

inhomogeneous Markov process with an infinite life time, and its transition semigroup
Ps,t is given by Ps,t(e, ·) = µs,t, and hence xt is an inhomogeneous Lévy process associated
to the convolution semigroup µs,t. As a component of a Feller process, xt is stochastically
continuous.

To summarize, we have established the following result.

Theorem 20. Let µs,t, 0 ≤ s ≤ t, be a two-parameter convolution semigroup on G
with µt,t = δe. Then µs,t is associated to a stochastically continuous inhomogeneous
Lévy process in G if and only if µs,t is continuous.

By the Markov property, it can be shown that the finite dimensional distributions
of an inhomogeneous Lévy process xt in G with initial distribution µ0 and associated
convolution semigroup µs,t are given by

E[f(xt1 , xt2 , . . . , xtn)] =

∫
f(x0x1, x0x1x2, . . . , x0x1x2 · · ·xn)

µ0(dx0)µ0,t1(dx1)µt1,t2(dx2) · · ·µtn−1,tn(dxn)(24)

for 0 ≤ t1 < t2 < · · · < tn and f ∈ Bb(Gn).

Remark 21. Let xt be a process in G with an infinite life time. By the proof of
Theorem 19, xt is a left invariant inhomogeneous Markov process if and only if it has
independent increments. In this case, if for any s ≥ 0, x−1

s xt → e in distribution
as t → s, then the distributions µs,t of x−1

s xt, s ≤ t, form a continuous convolution
semigroup with µt,t = δe for t ≥ 0. It follows that the transition semigroup Rt of the
process zt = (u+ t, xu+t), given in (23), is Feller, and hence xt has a rcll version that is
an inhomogeneous Lévy process in G.

More generally, let xt be a left invariant inhomogeneous Markov process in G without
assuming an infinite life time, and let Ps,t be its transition semigroup. Then Ps,tf(x) =
Ps,t(f ◦ lx)(e) =

∫
G
f(xy)µs,t(dy), where µs,t = Ps,t(e, ·). Assume µs,t is continuous in

(s, t) under the weak convergence. Although µs,t is a sub-probability, Rt defined by (23)
is still a Feller transition semigroup on R+ ×G, and hence xt has a rcll version.

Recall that a Radon measure has a finite charge on any compact set. A measure is
called diffuse if it does not charge points. The reader is referred to [21, Chapter 12] for
the standard definition of a Poisson random measure.

Theorem 22. Let xt be a left invariant inhomogeneous Markov process in G with a
possibly finite life time and transition semigroup Ps,t. Assume xt has rcll paths and
is stochastically continuous. Then there are a diffuse Radon measure λ on R+ and a
stochastically continuous inhomogeneous Lévy process x̂t in G with transition semigroup
P̂s,t such that

(25) Ps,t = e−λ((s, t])P̂s,t.
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This means that process xt is equal in distribution to x̂t killed at the random time point
of an independent Poisson random measure ξ on R+ with intensity measure λ. More
precisely, if for any starting time s, let τ be the first point of ξ on (s, ∞), and let x′t = x̂t
for s ≤ t < τ and x′t = ∆ for t ≥ τ , then x′t is an inhomogeneous Markov process with
transition semigroup Ps,t.

Proof. To prove (25), note that by the left invariance and the semigroup property of tran-
sition semigroup, Ps,t1 = Ps,t1(e) and for r < s < t, Pr,t1(e) =

∫
Pr,s(e, dx)Ps,t1(x) =

Pr,s1(e)Ps,t1(e). By the right continuity of Ps,t1(e) in t, it follows that there is a Radon

measure λ on R+ such that Ps,t1(e) = e−λ((s, t]). Let P̂s,t = eλ((s, t])Ps,t. Then Ps,t is a

conservative two-parameter transition semigroup and µ̂s,t = P̂s,t(e, ·) is a two-parameter
convolution semigroup of probability measures on G. By the stochastic continuity of xt,
λ is a diffuse measure and hence µ̂s,t is continuous. By Theorem 20, there is a stochas-
tically continuous inhomogeneous Lévy process x̂t in G associated to µ̂s,t. This proves
(25). �

As for a homogeneous Lévy process, we define an inhomogeneous Lévy process xt to
be associated to a filtration {Ft} if xt is adapted to {Ft} and for s < t, x−1

s xt is
independent of Fs. This is equivalent to saying that xt is associated to the filtration
{Ft} as an inhomogeneous Markov process.

Let xt be an inhomogeneous Lévy process xt in G with associated convolution semi-
group µs,t. If it is associated to a filtration {Ft}, then for fixed r ∈ R+, the process
x′t = x−1

r xr+t, t ∈ R+, is an inhomogeneous Lévy process with associated convolution
semigroup νs,t = µr+s,r+t, and is independent of Fr. In a certain sense, this holds when
r is replaced by a stopping time. The following result is an inhomogeneous analog of
Theorem 6.

Theorem 23. Let xt be an inhomogeneous Lévy process in G with associated convolution
semigroup µs,t. Assume it is associated to a filtration {Ft}. If τ is an {Ft}-stopping
time, then for t1 < t2 < · · · < tn and f ∈ Bb(Gn),

E[f(x−1
τ xτ+t1 , x

−1
τ xτ+t2 , . . . , x

−1
τ xτ+tn)1[τ<∞] | Fτ ]

=

∫
f(x1, x1x2, . . . , x1x2 · · ·xn)

µτ,τ+t1(dx1)µτ+t1,τ+t2(dx2) · · ·µτ+tn−1,τ+tn(dxn)1[τ<∞].

This implies that under the conditional distribution given τ , x′t = x−1
τ xτ+t is an inhomo-

geneous Lévy process in G with associated convolution semigroup νs,t = µτ+s,τ+t, and is
independent of Fτ . More precisely, this means that for any bounded Fτ -measurable H,

E[Hf(x−1
τ xτ+t1 , x

−1
τ xτ+t2 , . . . , x

−1
τ xτ+tn)1[τ<∞] | σ(τ)]

= E[H | σ(τ)]

∫
f(x1, . . . , x1x2 · · ·xn)µτ,τ+t1(dx1) · · ·µτ+tn−1,τ+tn(dxn)1[τ<∞].
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Proof. We may assume f ∈ Cb(Gn). As in the proof of Theorem 6, first assume τ has
discrete values. Then

E[f(x−1
τ xτ+t1 , x

−1
τ xτ+t2 , . . . , x

−1
τ xτ+tn)1[τ<∞] | Fτ ]

=
∑
t<∞

E[f(x−1
t xt+t1 , x

−1
t xt+t2 , . . . , x

−1
t xt+tn) | Ft]1[τ=t]

=
∑
t<∞

∫
f(x1, x1x2, . . . , x1x2 · · ·xn)

µt,t+t1(dx1)µt+t1,t+t2(dx2) · · ·µt+tn−1,t+tn(dxn)1[τ=t]

=

∫
f(x1, x1x2, . . . , x1x2 · · ·xn)

µτ,τ+t1(dx1)µτ+t1,τ+t2(dx2) · · ·µτ+tn−1,τ+tn(dxn)1[τ<∞].

For a general stopping time τ , choose discrete stopping times τm ↓ τ . The result
follows after taking the limit of the above expression with τ = τm as m→∞ and using
the right continuity of µs,t. �

The basic theory of inhomogeneous Lévy processes in a homogeneous space X = G/K
may be developed parallel to the case of Lévy processes in G/K discussed in §4 with
suitable modifications, assuming K is compact and G/K has a continuous local section.
Thus, a G-invariant inhomogeneous Markov process xt in X, that has rcll paths and
an infinite life time, will be called an inhomogeneous Lévy process in X. Let Ps,t be
its transition semigroup and let µs,t = Ps,t(o, ·). Then µs,t are K-invariant, and by the
Markov property and the G-invariance of Ps,t, it can be shown that the finite dimen-
sional distributions of xt are given in (24) if the integral like

∫
f(xy, xyz)µ(dy)ν(dz) is

understood in the sense of (19) with a choice of a section map S (but not dependent on
the choice).

By (24), it can be shown that an inhomogeneous Lévy process in X can be character-
ized by independent increments just like an inhomogeneous Lévy process in G. This is
similar to the homogeneous case, see the proof of Theorem 14. The result is summarized
below.

Theorem 24. Let xt be a rcll process in X = G/K with an infinite life time and let
{Fxt } be its natural filtration. If xt is an inhomogeneous Lévy process with associated
transition semigroup Ps,t, then for any section map S and s < t, x−1

s xt = S(xs)
−1xt is

independent of Fxs , and its distribution is µs,t = Ps,t(o, ·), so is K-invariant and does
not depend on the choice for S. Conversely, if for some section map S and any s < t,
x−1
s xt = S(xs)

−1xt is independent of Fxs and its distribution is K-invariant, then xt is
an inhomogeneous Lévy process in X.

A (two-parameter) convolution semigroup µs,t on X = G/K, 0 ≤ s ≤ t, and its
continuity and right continuity, are defined just as on G. For a convolution semigroup
µs,t on G, because for any t, µt,t ∗ µt,t = µt,t, it follows that µt,t = ρH for some compact
subgroupH ofG (which may depend on t). Because µs,t = µs,s∗µs,t = µs,t∗µt,t, it follows
that if each µs,t is K-right invariant, then each µs,t is K-bi-invariant. The following
simple result may be derived from Proposition 9 in the same way as Proposition 12.

Proposition 25. (a) If µs,t is a convolution semigroup on G such that each measure
µs,t is K-right invariant, then each µs,t is K-bi-invariant.
(b) If νs,t is a convolution semigroup on X = G/K, then each νs,t is K-invariant.
(c) The map

µs,t 7→ νs,t = πµs,t
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is a bijection from the set of K-bi-invariant convolution semigroups µs,t on G onto the
set of convolution semigroups νs,t on X = G/K. Moreover, µs,t is continuous (resp.
right continuous) if and only if so is νs,t.

For an inhomogeneous Lévy process xt in X, the distribution µs,t of its increments
x−1
s xt = S(xs)

−1xt, s ≤ t, form a right continuous convolution semigroup on X with
µt,t = δo for all t ≥ 0 (not dependent on the choice for the section map S), which is
called the convolution semigroup associated to process xt. The right continuity requires
a short proof given below.

Because a lcscH space is paracompact, there is a partition of unity {ψj} on X. This
is a collection of functions ψj ∈ Cc(X) with 0 ≤ ψj ≤ 1 such that

∑
j ψj = 1 is a locally

finite sum, that is, any point of X has a neighborhood on which only finitely many terms
ψj are nonzero. We may also assume that for each j, there is a section map Sj on X that
is continuous on the support of ψj . Then by (24), for s < t, f ∈ Cb(X) and a section
map S on X,

µs,t(f) = E[f(S(zs)
−1zt)] =

∑
j

E[ψj(zs)f(S(zs)
−1zt)]

=
∑
j

E[ψj(zs)f(Sj(zs)
−1zt)] = E[

∑
j

ψj(zs)f(Sj(zs)
−1zt)](26)

This shows that µs,t(f) is right continuous in s and t.
The following two results may be proved as for Theorems 20 and 22, respectively.

Theorem 26. Let µs,t be a convolution semigroup on X = G/K with µt,t = δo. Then
µs,t is associated to a stochastically continuous inhomogeneous Lévy process in X if and
only if µs,t is continuous.

Theorem 27. A stochastically continuous G-invariant inhomogeneous Markov process
xt in X = G/K, with rcll paths and a possibly finite life time, is identical in distribution
to a stochastically continuous inhomogeneous Lévy process x̂t killed at the random time
point of an independent Poisson random measure on R+ with a Radon intensity measure

λ. The transition semigroups Ps,t of xt and P̂s,t of x̂t are related by (25).

Remark 28. Let xt be a G-invariant inhomogeneous Markov process in X = G/K. It
can be shown as in Remark 21 that if µs,t = Ps,t(o, ·) is continuous in (s, t) under the
weak convergence, then xt has a rcll version. If xt also has an infinite life time, then this
verion is an inhomogeneous Lévy process in X.

As for a Lévy process, an inhomogeneous Lévy process gt in G is called K-conjugate
invariant if its transition semigroup Ps,t is K-conjugate invariant, that is, if Ps,t(f ◦ck) =
(Ps,tf) ◦ ck for f ∈ Bb(G) and k ∈ K. This is equivalent to saying that for any t > s ≥ 0

and k ∈ K, k(g−1
s gt)k

−1 d
= g−1

s gt (equal in distribution). For g0 = e, this is also
equivalent to saying that for any k ∈ K, the two processes gt and kgtk

−1 are equal
in distribution. The following result can be easily proved as for Theorem 18, and its
converse holds on a homogeneous space of a Lie group, see [27, Theorem 33].

Theorem 29. Let gt be a K-conjugate invariant inhomogeneous Lévy process in G. Then
xt = gto is an inhomogeneous Lévy process in X = G/K. Moreover, the transition
semigroups Ps,t of gt and Qs,t of xt are related by (Qs,tf)◦π = Ps,t(f ◦π) for f ∈ Bb(X).

6. Markov processes under a non-transitive action

Let X be a topological space under the continuous action of a topological group G,
both are assumed to be lcscH, and let xt be a G-invariant rcll Markov process in X with
transition semigroup Pt. Suppose the G-action on X is non-transitive. Then X is a
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collection of disjoint G-orbits. In this case, under some suitable regularity condition, we
may obtain a decomposition of the process into two components, one transversal to the
G-orbits and the other along an orbit, with the former preserving the Markov property
and the latter preserving the G-invariance.

We first derive a simple result under a general setting. Let X/G be the space of
G-orbits and let J : X → (X/G) be the projection map: x 7→ Gx. Equip X/G with
the quotient topology induced by J so that J is continuous and open. Note that if G is
compact, then X/G is lcscH.

Theorem 30. J(xt) is a rcll Markov process in X/G with transition semigroup Qt given
by

(27) Qtf(y) = Pt(f ◦ J)(x), y = J(x) ∈ X/G and f ∈ Bb(X/G)

(Qt does not depend on the choice of x in Gy due to the G-invariance of Pt). Moreover,
when G is compact, if xt is a Feller process, then so is J(xt).

Proof. For f ∈ Bb(X/G) and y ∈ (X/G),

E[f ◦ J(xt+s) | Fxt ] = Ps(f ◦ J)(xt) = Qsf(J(xt)).

This proves that J(xt) is a Markov process in X/G with transition semigroup Qt. When
G is compact, if f ∈ C0(X/G), then f ◦ J ∈ C0(X) and (Qtf) ◦ J = Pt(f ◦ J) ∈ C0(X),
which implies Qtf ∈ C0(X/G). The Feller property of J(xt) follows from that of xt. �

Let Y be a topological subspace of X that is transversal to the action of G in the
sense that it intersects each G-orbit at exactly one point, that is,

(28) ∀y ∈ Y, (Gy) ∩ Y = {y} and X = ∪y∈YGy.
Then Y will be called a transversal subspace of X (under the G-action). Let J1: X → Y
be the projection map J1(x) = y for x ∈ Gy. Note that Y is naturally identified with
the orbit space X/G via the map y 7→ Gy and J1 identified with J , but the subspace
topology on Y may not be the same as the quotient topology on X/G induced by J .
However, when G is compact and Y is closed in X, then the two topologies on Y agree
and J1 is continuous.

In the rest of this section, we will assume the two topologies agree even when G is not
compact. Then J1 is continuous. The following result is an immediate consequence of
Theorem 30.

Theorem 31. yt = J1(xt) is a rcll Markov process in the transversal subspace Y with
transition semigroup Qt given by

(29) Qtf(y) = Pt(f ◦ J1)(y), y ∈ Y and f ∈ Bb(Y ).

Moreover, if G is compact and if xt is a Feller process in X, then yt is a Feller process
in Y .

Now assume the isotropy subgroup of G at every point y ∈ Y is the same compact
subgroup K of G. This assumption is often satisfied if the transversal subspace Y is
properly chosen. For example, consider Rd without the origin under the action of the
group O(d) of orthogonal transformations on Rd. The O(d)-orbits are spheres centered at
the origin, and any curve from the origin to infinity is transversal if the curve intersects
each of these spheres only once. When the curve is straight, that is, if it is a half line,
all its points will have the same isotropy subgroup of O(d).

Let Z = G/K. For y ∈ Y and z ∈ Z, the product zy = gy, where z = gK, is well
defined. For y ∈ Y , zy traces out the G-orbit through y as z varies over Z, and hence
Z may be regarded as the standard G-orbit. Note that map F : (Y × Z)→ X given by
(y, z) 7→ zy is bijective. Because the restricted action map G × Y → X, (g, y) 7→ gy, is
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continuous and the projection map G× Y → Y ×Z, (g, y) 7→ (y, gK), is open, it follows
that F is continuous. If G is compact, then it is easy to show that F has a continuous
inverse and hence F : Y × Z → X is a homeomorphism.

We will now take this to be part of our assumption. By slightly changing the notation,
our general setup may be stated as follows. Let X = Y ×Z be a topological product with
Z = G/K, where G is a topological group and K is a compact subgroup. Assume both Y
and G are lcscH. Let G act on X by its natural action on G/K, that is, g(y, z) = (y, gz)
for g ∈ G, y ∈ Y and z ∈ Z. Then Y × {o} is transversal to the G-action and K is the
common isotropy subgroup of G at every point of Y × {o}. Let

(30) J1 : X → Y, and J2 : X → Z

be the natural projections (y, z) 7→ y and (y, z) 7→ z, respectively.
The processes yt = J1(xt) and zt = J2(xt) are called respectively the radial and

angular parts of process xt. By Theorem 31, the radial part yt is a Markov process in
Y . As the angular process zt lives in the standard G-orbit Z which is invariant under
the G-action, it is natural to expect that it should inherit the G-invariance of xt in
some sense. Before discussing the properties of the angular process zt, we present some
examples of spaces under group actions for which the topological assumptions made here
are satisfied.

Example 1: Let X = Rm+n = Y ×Z with Y = Rm and Z = Rn. In this case, G = Rn
(additive group), and K consists of only the origin in Rn.

Example 2: Consider the action of the orthogonal group G = O(d) on X = Rd (d ≥ 2).
Any half line Y from the origin is a transversal subspace. Except the origin, all the
points in Y have the same isotropy subgroup K of O(d), which may be identified with
the orthogonal group O(d − 1) on a (d − 1)-dimensional linear subspace of Rd. The
O(d)-orbits are spheres in Rd centered at origin.

Let X ′ be the Rd without the origin. Then X ′ = Y ′ × Z, where Y ′ = (0, ∞), and Z
is the unit sphere Sd−1 = O(d)/O(d− 1), via the map (r, z) 7→ rz from Y ′ × Z to X ′.

Example 3: Consider the space X of n× n real symmetric matrices (n ≥ 2) under the
action of G = O(n) by conjugation: (g, x) 7→ gxg−1 for g ∈ O(n) and x ∈ X. Because
symmetric matrices in X with the same set of eigenvalues are O(n)-conjugate to each
other, the set Y of all n × n diagonal matrices with non-ascending diagonal elements is
a transversal subspace.

Let Y ′ be the subset of Y consisting of diagonal matrices with strictly descending
diagonals. Then all y ∈ Y ′ have the same isotropy subgroup K of G = O(n), which is
the finite subgroup of O(n) consisting of diagonal matrices with ±1 along diagonal. Note
that an element of Y ′ not in Y has a larger isotropy subgroup. Let X ′ be the subset of
X consisting of symmetric matrices with distinct eigenvalues. Then X ′ may be identified
with Y ′ × (G/K) via the map (y, gK) 7→ gyg−1 from Y ′ × (G/K) to X ′.

Example 4: For readers who know symmetric spaces, we mention one more example.
Let X = G/K be a symmetric space of noncompact type, with a fixed Weyl chamber a+

and the centralizer M of a+ in K, see [16]. Let A+ ⊂ G be the image of a+ under the Lie
group exponential map from the Lie algebra of G to G. The set X ′ of regular points in X
is diffeomorphic to A+× (K/M) under the map: A+× (K/M) given by (a, kM) 7→ kaK,
so X ′ under the K-action satisfies our assumption with Y = A+ and Z = K/M . A
special case is the space X of n × n real positive definite symmetric matrices of unit
determinant, and X ′ is the space of those matrices with distinct eigenvalues. This is a
subset of the space in Example 3.
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It may occur as in Examples 2, 3 and 4 that not all the points of the transversal
subspace Y share the same isotropy subgroup of G, but by restricting to a slightly
smaller open subset Y ′ of Y and the G-invariant open subset X ′ of X that is the union
of G-orbits through Y ′, our assumptions are satisfied. In this case, if xt is a G-invariant
rcll Markov process in X, then its restriction to X ′, defined below, is a G-invariant rcll
Markov process in X ′.

The restriction of the process xt to X ′ is the process x̂t in X ′ defined by

(31) x̂t = xt for t < ζ and x̂t = ∆ for t ≥ ζ,

where ζ = inf{t ≥ 0; xt 6∈ X ′ or xt− 6∈ X ′} (inf ∅ =∞ by convention) and ∆ is the point
at infinity (see Appendix A.3). Then x̂t is a rcll process in X ′. Moreover, ζ is a stopping
time under the natural filtration {Fxt } of process xt because [ζ = 0] = [x0 6∈ X ′] and for
any t > 0,

[t < ζ] = ∪n>1{[xt ∈ X ′n] ∩ [xr ∈ X ′n for any r ∈ Q with 0 < r < t]} ∈ Fxt ,

where X ′n are open subsets of X with closures X̄ ′n contained in X ′ and X ′n ↑ X ′ as n ↑ ∞,
and Q is the set of rational numbers.

Proposition 32. If xt is a G-invariant rcll Markov process in X, then x̂t is a G-
invariant rcll Markov process in X ′ with transition semigroup P̂t given by

(32) P̂tf(x) = Ex[f(xt); t < ζ] for f ∈ B+(X ′) and x ∈ X ′.

Proof. Let θt be the time shift (see Appendix A.3). For s < t, 1[t<ζ] = 1[s<ζ](1[t−s<ζ]◦θs)
and

Ex[f(x̂t) | Fxs ] = Ex[f(xt)1[t<ζ] | Fxs ] = Ex{[f(xt−s)1[t−s<ζ]] ◦ θs | Fxs ]1[s<ζ]

= Exs
[f(xt−s)1[t−s<ζ]]1[s<ζ] = P̂t−sf(x̂s)1[s<ζ] = P̂t−sf(x̂s),

under the convention that any function on X or X ′ vanishes at ∆. This shows that x̂t is
a Markov process in X ′ with transition semigroup P̂t. By Proposition 1, the G-invariance
of process xt implies the G-invariance of P̂t. �

Remark 33. We may also define the restriction of process xt in X ′ by stopping xt at
the first time τ when it exits X ′, where τ = inf{t > 0; xt 6∈ X ′}. Thus, let x′t be defined
by (31) with x̂t and ζ replaced by x′t and τ . However, τ in general is not a stopping
time under Fxt and x′t may not be rcll in X ′. By the standard stochastic analysis, τ
is a stopping times under the filtration {Ft} that is the completion of {Fxt+}, and if
the original process xt is quasi-left-continuous, that is, if xσ = limn xσn almost surely
on [σ < ∞] for any {Ft}-stopping times σn ↑ σ, then the two processes x′t and x̂t are
identical almost surely. To show this, let X ′n be the open subsets of X ′ with X ′n ↑ X ′
as defined earlier, and let τn be the first times when xt exits X ′n. It is easy to see that
τn ↑ ζ, and so by the quasi-left-continuity, xζ = limn xτn almost surely. Because X ′n is
open, xτn 6∈ X ′n, and hence xζ 6∈ X ′ almost surely. This shows ζ = τ almost surely. It is
well known that a Feller process is quasi-left-continuous (see [21, Proposition 25.20]).

7. Angular part

As discussed in the previous section §6, when discussing an invariant Markov process
under a non-transitive action, by suitably restricting the process, it may be possible to
work under the following setup, which will be assumed throughout this section. Let
X = Y × Z be a topological product with Z = G/K, where G is a topological group
with identity element e and K is a compact subgroup. Assume both Y and G are lcscH.
Let G act on X by its natural action on G/K. Then with o = eK, Y ×{o} is transversal
to the G-action and K is the common isotropy subgroup of G at every point of Y ×{o}.
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We will also assume G/K has a continuous local section (as defined in §4). As in §6, let
J1: X → Y and J2: X → Z be the natural projections.

We mention an important case when this setup holds. When X is a manifold under
the (smooth) action of a Lie group G, and Y is a submanifold of X transversal to the
G-action, if the tangent space of X at any y ∈ Y is the direct sum of the tangent space
of Y at y and that of the orbit through y, that is, if

(33) ∀y ∈ Y, TyX = Ty(Gy)⊕ TyY (a direct sum).

then by [17, II.Lemma 3.3], for any y ∈ Y , there is a neighborhood U of y in Y , and a
neighborhood V of o = eK in Z = G/K, where e is the identity element of G as before,
such that the map (u, v) 7→ vu is a diffeomorphism from U × V onto a neighborhood of
y in X. From this, it is easy to show that F : Y × Z → X is a diffeomorphism. The
existence of a continuous local section holds automatically in the Lie group case.

Let xt be a G-invariant Markov process in X. By Theorem 31, the radial process
yt = J1(xt) is a Markov process in Y . The purpose of this section is to study the angular
process zt = J2(xt) under the conditional distribution given the radial process yt. We
now begin with some preparation.

Let (S, ρ) be a complete and separable metric space, and let D(S) be the space of rcll
paths in S, that is, the space of rcll maps: R+ → S. Under the Skorohod metric, D(S)
is a complete and separable metric space (see [10, chapter 3]). By Proposition 5.3(c) in
[10, chapter 3], the convergence xn → x in D(S) means that up to a time change that is
asymptotically an identity, xn(t) converge to x(t) uniformly for bounded t. Precisely, this
means that for any T > 0, there are bijections λn: R+ → R+ (necessarily continuous with
λn(0) = 0) such that |λn(t)− t| → 0 and ρ(xn(t), x(λn(t)))→ 0 as n→∞ uniformly for
t ∈ [0, T ]. By Proposition 7.1 in [10, chapter 3], the Borel σ-algebra on D(S) is generated
by the coordinate maps: D(S) → S given by x 7→ x(t) for t ∈ R+. It is easy to show
that the topology on D(S) induced by the Skorohod metric is determined completely by
the topology of (S, ρ), and does not depend on the choice of ρ.

Let X∆ = X ∪ {∆} be the one-point compactification of X. Because X is a lcscH
space, X∆ is metrizable (see Theorem 12.12 in [5, chapter I]), and as being compact,
X∆ may be equipped with a complete and separable metric. Let D′(X) be the space of
rcll paths in X with possibly finite life times. These are rcll paths in X∆ such that each
path x(·) is associated to a life time ζ ∈ [0, ∞] with x(t) ∈ X for t < ζ and x(t) = ∆ for
t ≥ ζ. By Proposition 34 below, D′(X) is a Borel subset of D(X∆), and hence D′(X) is
a Borel space (see Appendix A.7 for the definition of Borel spaces).

Proposition 34. D′(X) is a Borel subset of D(X∆), and hence D′(X) is a Borel space.

Proof. Let Xn be open subsets of X such that X̄n ⊂ Xn+1 and Xn ↑ X. Then D′(X) =
∩m>0A(m), where A(m) = ∪∞n=1 ∪r∈Q,r≥0 A(m,n, r) and A(m,n, r) = {x ∈ D(X∆);
x(s) = ∆ for s ∈ Q ∩ [r, ∞) and x(s) ∈ Xn for s ∈ Q ∩ [0, r − 1/m]}. �

For b > 0, let D′b(X) be the subset of D′(X) consisting of all paths with a common
constant life time b. Then D′b(X) is a closed in D′(X) under the Skorohod metric, and
D′∞(X) = D(X).

Recall J1: X → Y and J2: X → Z are the natural projections Y × Z → Y and
Y × Z → Z. We will also use J1 and J2 to denote the maps

J1 : D′(X) → D′(Y ), x(·) 7→ y(·), and J2 : D′(X) → D′(Z), x(·) 7→ z(·),
respectively, given by the decomposition x(·) = (y(·).z(·)).

Recall xt is a G-invariant rcll Markov process in X. It may be regarded as the
coordinate process on the canonical path space D′(X), that is, xt(ω) = ω(t) for ω ∈ Ω.
The radial part yt = J1(xt) and the angular part zt = J2(xt) are thus the coordinate
processes on D′(Y ) and D′(Z), respectively. For t > s ≥ 0, let FYs,t = σ{yu; u ∈ [s, t]},
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the σ-algebra on D′(Y ) generated by the radial process on the time interval [s, t], and
set FYt = FY0,t and FY∞ = σ{∪t>0F∞t }.

The distribution Px of the process xt with x0 = x is a probability kernel from X to Ω.
By the standard probability theory, if the underlying probability space (Ω,F , P ) is a Borel
space, then for any σ-algebra G ⊂ F , there is a regular conditional distribution Q(ω,B)
of P given G, which is a probability kernel from (Ω,G) to (Ω,F), such that for B ∈ F ,
P (B | G) = Q(·, B) P -almost surely. This result can be extended to our probability kernel
Px (by suitably adapting the standard proof as in [21, Theorem 6.3]). Let P ′x(x(·), ·) be
of regular conditional distribution of Px given the radial process yt = J1xt, that is, given
J−1

1 (FY∞). This is a probability kernel from (X×Ω,B(X)×J−1
1 (FY∞)) to (Ω,F). Because

it is B(X) × J−1
1 (FY∞)-measurable, for any y(·) ∈ D′(Y ), P ′x(x(·), ·) is constant on the

set J−1
1 ({y(·)}). Let PYx (y(·), ·) = P ′x((y(·), o(·)), ·), where o(·) ∈ D′(Z) is the constant

path o(t) = o for all t ≥ 0.
For x ∈ X with decomposition x = (y, z), let

(34) Qy = J1Px = Px(J−1
1 (·)).

This is the distribution of the radial process yt = J1xt with y0 = y, and it does not
depend on x in the orbit Gy. For z ∈ Z, y(·) ∈ D′(Y ) and x = (y(0), z), let

(35) Ry(·)
z (·) = PYx (y(·), J−1

2 (·)).
This is a probability kernel from Z × D′(Y ) to D′(Z) such that for any y ∈ Y , z ∈ Z
and measurable F ⊂ D′(Z), with x = (y, z),

(36) Ry(·)
z (F ) = Px[J−1

2 (F ) | J−1
1 (FY∞)] for Qy-almost all y(·).

Thus, R
y(·)
z is the conditional distribution of the angular process zt = J2(xt) given the

radial path y(·) under Px with x = (y(0), z).
The life time ζ of process xt is equal to that of the radial process yt, and hence is

J−1
1 (FY∞)-measurable. Thus, given J−1

1 (FY∞) or under R
y(·)
z , ζ is a constant. For z ∈ Z

and Qy-almost all y(·) ∈ D′(Y ), the measure R
y(·)
z is supported D′ζ(X).

For t ∈ R+, the time shift θYt on D′(Y ) is defined as usual by θYt y(·) = y(·+ t). Then
ys ◦ θYt = ys+t for the coordinate process ys on D′(Y ).

Recall Lévy processes in Lie groups and homogeneous spaces, including inhomogeneous
ones, are defined to have infinite life times, but these definitions may be easily modified to
include processes defined on a finite time interval [0, T ] or [0, T ) for some constant T > 0.
The following result says that almost surely, given the radial process yt, the conditioned
angular process zt is an inhomogeneous Lévy process in Z = G/K for 0 ≤ t < ζ.

Theorem 35. For y ∈ Y and z ∈ Z, and Qy-almost all y(·) in D′(Y ), the coordinate

process zt on D′ζ(Z) is an inhomogeneous Lévy process under R
y(·)
z . The associated con-

volution semigroup µs,t, setting µs,t = 0 for t ≥ ζ, is FYs,t-measurable for any s ≤ t (that

is, µs,t(B) is FYs,t-measurable for B ∈ B(Z)) and has the time shift property

(37) µs,t = µ0,t−s ◦ θYs .
Moreover, the transition semigroup Pt of the Markov process xt is given by

(38) ∀f ∈ B+(X) and x = (y, z) ∈ X, Ptf(x) = Qy[

∫
µ0,t(dz1)f(yt, zz1)1[ζ>t]].

Proof. Recall Qt is the transition semigroup of the radial process yt. By the existence of a
regular conditional distribution, there is a probability kernel Rt(y, y1, ·) from Y 2 = Y ×Y
to Z such that for y ∈ Y , Pt((y, o), dy1 × dz1) = Qt(y, dy1)Rt(y, y1, dz1). Then let
Rt(y, y1, ·) = J2R

′
t(y, (y1, o), ·), noting R′t(y, (y1, z), ·) is constant in z ∈ Z and supported

by J−1
1 ({y1}).
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The G-invariance of Pt implies that Pt((y, o), ·) is K-invariant, and hence the measure
Rt(y, y1, ·) is K-invariant for Qt(y, ·)-almost all y1. Modifying Rt on the exceptional set
{(y, y1); Rt(y, y1, ·) is not K-invariant}, its y-section has zero Qt(y, ·)-measure for all y ∈
Y , we may assume Rt(y, y1, ·) is K-invariant for all y, y1 ∈ Y . Therefore, for z ∈ Z, it is
meaningful to write Rt(y, y1, z

−1dz1) = Rt(y, y1, S(z)−1dz1) and
∫
f(zz1)Rt(y, y1, dz1) =∫

f(S(z)z1)Rt(y, y1, dz1) because they are independent of choice of section map S. We
then have, for x = (y, z) ∈ X,

(39) ∀y ∈ Y and z ∈ Z, Pt(x, dz1 × dy1) = Qt(y, dy1)Rt(y, y1, z
−1dz1).

For 0 < s1 < s2 < · · · < sk <∞, y ∈ Y , z ∈ Z, h ∈ Cb(Y k) and f ∈ Cb(Zk),

Ex[h(ys1 , . . . , ysk)f(zs1 , . . . , zsk)1[ζ>sk]]

=

∫ ∫
Ps1(x, dz1 × dy1)

Ps2−s1((y1, z1), dz2 × dy2) · · ·Psk−sk−1
((yk−1, zk−1), dzk × dyk)

h(y1, y2, . . . , yk)f(z1, z2, . . . , zk)

=

∫
Qs1(y, dy1)Qs2−s1(y1, dy2) · · ·Qsk−sk−1

(yk−1, dyk)h(y1, y2, . . . , yk)∫
Rs1(y, y1, dz1)Rs2−s1(y1, y2, dz2) · · ·Rsk−sk−1

(yk−1, yk, dzk)

f(zz1, zz1z2, . . . , zz1 · · · zk)

= Ey[h(ys1 , ys2 , . . . , ysk)

∫
Rs1(y, ys1 , dz1)Rs2−s1(ys1 , ys2 , dz2) · · ·

Rsk−sk−1
(ysk−1

, ysk , dzk)f(zz1, zz1z2, . . . , zz1 · · · zk)1[ζ>sk]].

This implies that Px-almost surely on [ζ > sk],

Ex[f(zs1 , . . . , zsk) | ys1 , . . . , ysk ] =

∫
Rs1(y, ys1 , dz1)Rs2−s1(ys1 , ys2 , dz2) · · ·

Rsk−sk−1
(ysk−1

, ysk , dzk)f(zz1, zz1z2, . . . , zz1 · · · zk)].(40)

For an integer m ≥ 1, let Γm be the set of dyadic numbers i/2m for i = 0, 1, 2, . . .
and let Γ = ∪∞m=1Γm. For s < t ≤ T in Γm, let 0 = s0 < s1 < s2 < · · · < sk = T be a
partition of [0, T ] spaced by 1/2m with s = si and t = sj , and let

(41) µms,t = Rsi+1−si(ysi , ysi+1
, ·) ∗Rsi+2−si+1

(ysi+1
, ysi+2

, ·) ∗ · · · ∗Rsj−sj−1
(ysj−1

, ysj , ·).
By (40), K-invariance of Pt((y, o), y1, ·) and the measurability of µms,t in ysi , . . . , ysj ,

(42) µms,t(f) = Ex[f(z−1
s zt) | ys1 , . . . , ysk ] = Ex[f(z−1

s zt) | ysi , . . . , ysj ]

Px-almost surely on [ζ > T ] for f ∈ Cb(Z), which is independent of the choice for the
section map S to represent z−1

s zt = S(zs)
−1zt.

By the right continuity of yt, as m → ∞, σ{ys1 , . . . , ysk} ↑ FYT and σ{ysi , . . . , ysj} ↑
FYs,t, it follows that as m → ∞, µms,t(f) → Ex[f(z−1

s zt) | FYT ] = Ex[f(z−1
s zt) | FYs,t]

Px-almost surely on [ζ > T ]. The exceptional set may be chosen simultaneously for
countably many f ∈ Cb(Z) and hence for all f ∈ Cb(Z). It follows that Px-almost surely
on [ζ > T ], there is an K-invariant probability measure µs,t such that µms,t → µs,t weakly
and for f ∈ Cb(Z),

(43) µs,t(f) = Ex[f(z−1
s zt) | FYT ] = Ex[f(z−1

s zt) | FYs,t] Px-almost surely on [ζ > T ].

Note that µms,t is independent of choice T ∈ Γm with T ≥ t, and hence µs,t is defined for
any s, t ∈ Γ with s < t < ζ. Set µt,t = δo and µs,t = 0 for t ≥ ζ. By (41), µs,t is an
FYs,t-measurable random measure independent of starting point x and has the time shift
property (37) for s, t ∈ Γ. Moreover, µr,s ∗ µs,t = µr,t for r ≤ s ≤ t in Γ. Because Γ is
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countable, the exceptional set of zero Px-measure for the weak convergence µms,t → µs,t
may be chosen simultaneously for all s ≤ t and T in Γ.

For 0 ≤ t1 < t2 < · · · < tn ≤ T in Γ, it can be shown from (40) and by choosing
a partition s1 < s2 < · · · < sk of [0, T ] from Γ containing all ti, spaced by 1/2m, that
almost surely on [ζ > T ], for f ∈ Cb(Zn),

Ex[f(zt1 , . . . , ztn) | FYT ] = lim
m→∞

Ex[f(zt1 , . . . , ztn) | ys1 , . . . , ysk ]

= lim
m→∞

∫
f(zz1, zz1z2, . . . , zz1 · · · zn)µm0,t1(dz1)µmt1,t2(dz2) · · ·µmtn−1,tn(dzn).

This implies that for 0 ≤ t1 < · · · < tn ≤ T in Γ, y ∈ Y and z ∈ Z, and Qy-almost all
y(·) ∈ [ζ > T ],

Ry(·)
z [f(zt1 , . . . , ztn)] = Ex[f(zt1 , . . . , ztn) | FYT ]

=

∫
f(zz1, zz1z2, . . . , zz1 · · · zn)µ0,t1(dz1)µt2,t1(dz2) · · ·µtn−1,tn(dzn).(44)

Then the finite dimensional distribution of the conditioned angular process zt under R
y(·)
z ,

when restricted to time points in Γ ∩ [0, T ], has the form consistent with an inhomoge-
neous Lévy process in Z. To prove that the conditioned process zt is an inhomogeneous
Lévy processes in Z, restricted to time interval [0, T ], it remains to extend µs,t in (43)
to all real s ≤ t in [0, T ] and prove (44) for real times t1 < t2 < · · · < tn in [0, T ].

By a computation similar to the one leading to (26), it can be show that for s < t ≤ T
in Γ and f ∈ Cb(Z),

µs,t(f) = Ex[
∑
j

ψj(zs)f(Sj(zs)
−1zt) | FYT ] Px-almost surely on [ζ > T ],

where {ψj} is a partition of unity on Z and for each j, Sj is a section map on Z = G/K
that is continuous on the support of ψj . The above expression for µs,t(f) extends to
real times s < t, and it is clearly right continuous in s and t. Moreover, considering
Px(· | FYT ) as a regular conditional distribution of Px given FYT , no additional exceptional
set is produced. Because for real s < t, µs,t is the weak limit of µp,q for p, q ∈ Γ as p ↓ s
and q ↓ t, taking limit in (44) shows that it holds on real time points. It is also clear
that µs,t is FYs,t-measurable and has the time shift property (37).

It remains to prove (38) which follows from

Ptf(x) = Ex[f((yt, zt))1[ζ>t]] = Ex{Ry(·)
z [f((y′, zt))]y′=yt1[ζ>t]}

= Qy[

∫
µ0,t(dz1)f((yt, zz1))1[ζ>t]],

where the last equality is due to (44). �

The following result provides a converse to Theorem 35.

Theorem 36. Let yt be a rcll Markov process in Y with life time ζ and for any y ∈ Y ,
let Qy be its distribution on D′(Y ) with Qy(y0 = y) = 1. Assume for any y ∈ Y , z ∈
Z = G/K and Qy-almost all y(·), there is a probability measure R

y(·)
z on D′(Z) such that

under R
y(·)
z , the coordinate process zt on D′(Z) is an inhomogeneous Lévy process zt in

Z for t < ζ, with z0 = z, and the associated convolution semigroup µs,t (setting µs,t = 0
for t ≥ ζ) is FYt -measurable and has the time shift property (37) as in Theorem 35.
Then xt = (yt, zt) is a G-invariant rcll Markov process in X with transition semigroup
Pt given by (38).
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Proof. For z ∈ Z and y(·) ∈ D′(Y ), let R
y(·)
z be the distribution on D′(Z) of the inhomo-

geneous Lévy process zt in Z for t < ζ with z0 = z, associated to convolution semigroup
µs,t. Then for 0 ≤ t1 < t2 < · · · < tn < ζ and f ∈ Cb(Zn),

Ry(·)
z [f(zt1 , zt2 , . . . , ztn)] =

∫
f(zz1, zz1z2, . . . , zz1z2 · · · zn)

µ0,t1(dz1)µt1,t2(dz2) · · ·µtn−1,tn(dzn).

Because µs,t is FYt measurable, R
y(·)
z [f(zt1 , zt2 , . . . , ztn)] is measurable on Z × D′(Y ).

Then a simple monotone class argument shows that R
y(·)
z is a kernel from Z ×D′(Y ) to

D′(Z).
For x ∈ X with x = (y, z), let Px be the measure on D′(Y )×D′(Z) defined by

∀F ∈ Bb(D′(Y )×D′(Z)), Px(F ) = Qy{Ry(·)
z [F (y(·), ·)]}.

Then Px is a probability measure supported by the closed subset H of D′(Y ) × D′(Z)
consisting of (y(·), z(·)) with the same life time for y(·) and z(·). The map: x(·) 7→
(J1x(·), J2x(·)) is continuous and bijective from D′(X) onto H, and its inverse is also
continuous under the Skorohod metric. We will identify D′(X) with H via this map, and
then Px may be regarded as a probability measure on D′(X).

For 0 ≤ s1 < s2 < · · · < sn = s < t, h ∈ Cb(Xn) and f ∈ Cb(X),

Ex[h(xs1 , xs2 , . . . , xsn)f(xt)]

= Qy{Ry(·)
z [h(zs1y1, zs2y2, . . . , zsnyn)f(zty

′)]y1=y(s1),y2=y(s2),...,yn=y(sn),y′=y(t)}

= Qy{
∫
h(zz1ys1 , zz1z2ys2 , . . . , zz1z2 · · · znysn)f(zz1z2 · · · znz′yt)

µ0,s1(dz1)µs1,s2(dz2) · · ·µsn−1,sn(dzn)µs,t(dz
′)}

= Qy{
∫
h(zz1ys1 , zz1z2ys2 , . . . , zz1z2 · · · znysn)µ0,s1(dz1)µs1,s2(dz2) · · ·µsn−1,sn(dzn)

Qy[(

∫
µ0,t−s ◦ (dz′)f(zz1z2 · · · znz′yt−s)) ◦ θYs | FYs ]}

= Qy{
∫
h(zz1ys1 , zz1z2ys2 , . . . , zz1z2 · · · znysn)µ0,s1(dz1)µs1.s2(dz2) · · ·µsn−1,sn(dzn)

Qys [

∫
µ0,t−s(dz

′)f(zz1z2 · · · znz′yt−s)]}

= Qy{Ry(·)
z {h(zs1y1, zs2y2, . . . , zsnyn)

Qyn [

∫
µ0,t−s(dz

′)f(z̃z′yt−s)]z̃=zs}yi=y(si),1≤i≤n}

= Px{h(xs1 , xs2 , . . . , xsn)Pt−sf(xs)}.

This shows that under Px, xt is a Markov process in X with transition semigroup Pt
given by (38). It follows directly from (38) that Pt is G-invariant. �
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1. D. Applebaum, Lévy processes and stochastic calculus, second ed., Cambridge Univ. Press, 2009.

2. D. Applebaum, Probability on compact Lie groups, Springer, 2014.
3. M. Babullot, Comportement asymptotique due mouvement Brownien sur une variété homogène
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