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B. I. KOPYTKO AND R. V. SHEVCHUK

ON FELLER SEMIGROUPS ASSOCIATED WITH

ONE-DIMENSIONAL DIFFUSION PROCESSES WITH MEMBRANES

By analytical method we obtain the integral representation of a two-parameter semi-
group of operators associated with Feller process on a line which is a result of pasting

together given diffusions at finite number of fixed points. The behavior of this pro-

cess at each point of pasting together is described by Feller-Wentzell conjugation
condition containing the integral term (nonlocal component).

1. Introduction

The paper deals with the problem of construction of diffusion process in a domain
by given differential operators with supplementation of boundary conditions which de-
termine the behavior of the process at the boundary points of the domain. Recall that
the general form of the boundary conditions for one-dimensional diffusion processes was
established in works of W. Feller [1] and A. D. Wentzell [2] (see also [3] where the mul-
tidimensional case was considered). There were considered the assertions from which it
follows that if the ordinary operator of the second order which is given on a closed interval
∆ = [r1, r2] and acts on C2(∆) is the generator of the one-parameter Feller semigroup
then its domain of definition consists of the functions which satisfy mentioned boundary
conditions.

Notice that boundary conditions of Feller-Wentzell mentioned above have nonlocal
nature, that is, they except the value of the function and its derivatives at the boundary
points of the domain ∆ contain also the integral of this function over the set ∆ with re-
spect to some nonnegative and, generally speaking, infinite measure µ which corresponds
to the possibility of jump-like exit of the process from the boundary of the domain. Many
publications (see, for instance, works [1-9] and the references given there) are devoted to
the questions on construction of diffusion processes by given boundary conditions.

The generalization of the problem mentioned above is the so-called problem of pasting
together diffusion processes on a line (see, for instance, [10-14]). Precisely this problem
is the object of research in the present paper. The problem is to construct the two-
parameter Feller semigroup which corresponds to inhomogeneous Markov process (not
necessarily continuous) on a line R separated into intervals by some finite number of
points r1, r2, . . . , rn, n ∈ N, such that its parts at interior points of the corresponding
intervals coincide with the diffusion processes given there and its behavior at points
ri, i = 1, n, is described by Feller-Wentzell conjugation conditions given at these points.
Another n conjugation conditions given at points r1, r2, . . . , rn, respectively, reflect Feller
property of the required process. The study of the problem is performed by analytical
methods. With such an approach the question on construction of the required semigroup
in fact is being reduced to the investigation of the corresponding problem of conjugation
for a linear parabolic equation of the second order with discontinuous coefficients. The
classical solvability of the last problem is established by the boundary integral equations
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method with the use of the ordinary simple-layer parabolic potentials. Perhaps in the
statement proposed here the problem of pasting together diffusion processes and also the
corresponding to it parabolic conjugation problem are considered for the first time.

Notice that in mentioned works [11-13] the described problem was already considered
in case n = 1 for both homogeneous and inhomogeneous diffusion processes. Concerning
the work [14] the general form of the conjugation condition at point of pasting together
two diffusion processes by analogy with the work [2] was established there.

2. Problem statement

Let r1, r2, . . . , rn, n ∈ N, be the fixed points on a line R which separate it into n+ 1
domains D1 = (−∞, r1), D2 = (r1, r2), . . . , Dn = (rn−1, rn), Dn+1 = (rn,+∞). In the
sequel, symbols −∞ and +∞ in expressions for domains D1 and Dn+1 will be denoted by
r0 and rn+1 respectively. Denote by Di the closure of the domain Di, i = 1, n+ 1, and
by ϕi the restriction of any function ϕ defined on R to Di. If Γ is the set Di, Di or R,
then Cb(Γ) is the Banach space of all real-valued bounded and continuous on Γ functions
with the norm ‖ϕ‖ = supx∈Γ |ϕ(x)| and C2(Γ) is the space of all functions ϕ, bounded
and uniformly continuous on Γ together with their first- and second-order derivatives.

Assume that the inhomogeneous diffusion process is given in each domain Di, i =

1, n+ 1, and it is generated by the second-order differential operator (A
(i)
s , C2(Di)), s ∈

[0, T ] (T > 0 fixed)

(1) A(i)
s ϕi(x) =

1

2
bi(s, x)

d2ϕi(x)

dx2
+ ai(s, x)

dϕi(x)

dx
,

where the diffusion coefficient bi(s, x) and the drift coefficient ai(s, x) have the following
properties:

1) there exist constants b and B such that 0 < b < bi(s, x) < B for all (s, x) ∈
[0, T ]×Di;

2) function ai(s, x) is bounded on [0, T ]×Di;
3) for all s, s′ ∈ [0, T ], x, x′ ∈ Di the next inequalities hold:

|bi(s, x)− bi(s′, x′)| ≤ C(|s− s′|α2 + |x− x′|α),

|ai(s, x)− ai(s′, x′)| ≤ C(|s− s′|α2 + |x− x′|α),

where C and α are positive constants, 0 < α < 1.

Consider the differential operator As, s ∈ [0, T ], which acts on the set ϑ(As) = {ϕ ∈
Cb(R) : ϕi ∈ ϑ(A

(i)
s ), i = 1, n+ 1 ∧ A

(j)
s ϕj(rj) = A

(j+1)
s ϕj+1(rj), j = 1, n} by the

following rule:

Asϕ(x) = A(i)
s ϕi(x), x ∈ Di, i = 1, n+ 1.

Assume that at points r1, r2, . . . , rn the Feller-Wentzell conjugation conditions are
given (see [1, 2])

(2) L(i)
s ϕ(ri) ≡ qi,i(s)ϕ′(ri−)− qi,i+1(s)ϕ′(ri+) +

∫
Di∪Di+1

(ϕ(ri)− ϕ(y))µi(s, dy) = 0,

where functions qi,i, qi,i+1 and measures µi, i = 1, n, satisfy the conditions:

a) qi,j ∈ C([0, T ]), qi,j(s) ≥ 0,
∑
j

qi,j(s) > 0, s ∈ [0, T ], j = i, i+ 1;

b) µi(s, ·) is nonnegative measure on Di∪Di+1 such that for any function f ∈ Cb(R)
and any number δ > 0 the integrals∫

Dδj (ri)

|y − ri|f(y)µi(s, dy),

∫
Dj\Dδj (ri)

f(y)µi(s, dy), j = i, i+ 1,
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are continuous on [0, T ] as functions of variable s; Dδ
j (ri) = {y ∈ Dj : |y− ri| <

δ}.
It is known ([14]) that the conjugation conditions (2) restrict the differential operator

As to the generator of some Feller semigroup in the space Cb(R). Such a semigroup is
constructed in the present paper. Thus, our problem is to construct the semigroup of
operators Ts,t, 0 ≤ s < t ≤ T , which describes inhomogeneous Feller process on R such
that in each domain Di, i = 1, n+ 1 it coincides with the diffusion process generated

by the operator A
(i)
s and its behavior at points r1, r2, . . . , rn is determined by Feller-

Wentzell conjugation conditions (2).
The problem formulated above is also called the problem of pasting together n diffusion

processes on a line or the problem of mathematical modeling of the diffusion phenomenon
on a line with membranes placed at fixed points r1, r2, . . . , rn that separates different
(by their diffusion characteristics) media. In considered case the membrane at point ri
is characterized by the functions qi,i, qi,i+1 and the measure µi. If the diffusion particle
reaches the point ri from the domain Di, then function qi,i corresponds to its reflection
back toDi, and the function qi,i+1 corresponds to its penetration to the domainDi+1, and
conversely, the function qi,i corresponds to penetration of the particle to Di, and qi,i+1

corresponds to its reflection to Di+1, when reaching the membrane is from the domain
Di+1. The measure µi which, generally speaking, can be infinite in a neighborhood of
ri, corresponds to the jump of the diffusion particle into the domain Di or Di+1.

Notice that (see [14]) the general Feller-Wentzell conjugation condition, except terms
which are in the condition (2), also contains terms which characterize the delay capability
and disappearing capability of the process after it reaches the boundary of the domain.
Process with these additional properties (see [12]) can be constructed by similar consid-
erations to those leading to the required process in the present paper.

According to the analytical approach to study of the formulated problem, the required
family of operators Ts,t, 0 ≤ s < t ≤ T will be defined by solution u(s, x, t) of the
following parabolic conjugation problem:

∂u(s, x, t)

∂s
+A(i)

s u(s, x, t) = 0, 0 ≤ s < t ≤ T, x ∈ Di, i = 1, n+ 1,(3)

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ R,(4)

u(s, ri−, t) = u(s, ri+, t), 0 ≤ s < t ≤ T, i = 1, n,(5)

L(i)
s u(s, ri, t) = 0, 0 ≤ s < t ≤ T, i = 1, n,(6)

where ϕ ∈ Cb(R) is the given function. Notice that in problem (3)-(6) the conjugation
conditions (5) reflect the Feller property of the required semigroup Ts,t and equalities (6)
correspond to Feller-Wentzell conjugation conditions (2).

3. Solution of the problem

We establish the classical solvability of the problem (3)-(6) by the boundary integral
equations method. For this purpose, without loss of generality, we suppose that the
functions ai(s, x), bi(s, x), i = 1, n+ 1, are defined on [0, T ] × R and satisfy conditions
1)-3) in this domain.

These conditions ensure the existence of the fundamental solution in the domain
[0, T ] × R for each equation in (3), that is existence of such a function Gi(s, x, t, y)
defined for 0 ≤ s < t ≤ T, x, y ∈ R which (see [10, Ch.II, §2], [17, Ch.IV, §11])

(i) is continuous in the aggregate of variables;
(ii) satisfies the equation (3) for fixed t ∈ (0, T ], y ∈ R as function of (s, x) ∈ [0, t)×R;
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(iii) satisfies the condition

lim
s↑t

∫
R

Gi(s, x, t, y)ϕ(y)dy = ϕ(x)

for any function ϕ ∈ Cb(R) and any t ∈ (0, T ], x ∈ R.

Besides, functions Gi(s, x, t, y) can be represented as

(7) Gi(s, x, t, y) = Zi(s, x, t, y) + Z
′

i(s, x, t, y), 0 ≤ s < t ≤ T, x, y ∈ R,
where

Zi(s, x, t, y) = [2πbi(t, y)(t− s)]−
1
2 e
− (y−x)2

2bi(t,y)(t−s)

and Z
′

i is written in the form of integral operator with kernel Zi and density Qi which
is determined from some integral equation.

We mention, among other properties of fundamental solutions Gi(s, x, t, y), the fol-
lowing estimations (0 ≤ s < t ≤ T, x, y ∈ R):

(8)
|Dr

sD
p
xGi(s, x, t, y)| ≤ C(t− s)−

1+2r+p
2 e−h

(y−x)2
t−s ,

|Dr
sD

p
xZ
′

i(s, x, t, y)| ≤ C(t− s)−
1+2r+p−α

2 e−h
(y−x)2
t−s ,

where r and p are the nonnegative integers for which 2r + p ≤ 2, C, h are positive
constants, α is the constant in 3), Dr

s is the partial derivative with respect to s of order
r, Dp

x is the partial derivative with respect to x of order p.
We find a solution of problem (3)-(6) of the form

(9) u(s, x, t) = u
(i)
0 (s, x, t) + u(i)(s, x, t), 0 ≤ s < t ≤ T, x ∈ Di, i = 1, n+ 1,

where

u
(i)
0 (s, x, t) =

∫
R

Gi(s, x, t, y)ϕ(y)dy, i = 1, n+ 1,

u(i)(s, x, t) =

t∫
s

[
Gi(s, x, τ, ri−1)Vn+i−1(τ, t) +Gi(s, x, τ, ri)Vi(τ, t)

]
dτ, i = 1, n+ 1,

V1, . . . , V2n are the unknown functions to be determined. Here and in the sequel kernels
G1(s, x, t, r0) and Gn+1(s, x, t, rn+1) are assumed to be equal to zero.

Notice that in theory of parabolic equations functions u
(i)
0 (s, x, t) are called the Poisson

potentials and integrals by which the functions u(i)(s, x, t) are expressed are called the
parabolic simple-layer potentials.

From mentioned properties of fundamental solutions of uniformly parabolic operators

it follows that if ϕ ∈ Cb(R), then each function u
(i)
0 (s, x, t) is continuous for s ∈ [0, t), x ∈

R, continuously differentiable with respect to s, twice continuously differentiable with
respect to x and for it the inequality

(10) |Dr
sD

p
xu0(s, x, t)| ≤ C‖ϕ‖(t− s)−

2r+p
2 ,

holds (when 2r + p ≤ 2 and C is some constant) in each domain of the form 0 ≤
s < t ≤ T, x ∈ R. Further, the function u

(i)
0 (s, x, t) satisfies equation (3) in domain

(s, x) ∈ [0, t)×Di, i = 1, . . . , n + 1, and the initial condition (4). Concerning the func-
tion u(i)(s, x, t) under corresponding assumptions on densities Vi and Vn+i−1 it satisfies
equation (3) and the initial condition lim

s↑t
u(i)(s, x, t) = 0.

The important property of simple-layer potential is represented by well-known theorem
on the jump of the conormal derivative of this function (see [16, Ch.V, §2], [17, Ch.IV,
§15], [10, Ch.II, §3]. Here this property is applied to compute the right- and left-side
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derivatives of function u(i)(s, x, t) at points x = ri−1 and x = ri respectively. In our case
the formulas for mentioned derivatives take the form

D1
xu

(i)(s, ri−1+, t) = −Vn+i−1(s, t)

bi(s, ri−1)
+

t∫
s

[
D1
xGi(s, x, τ, ri−1)|x=ri−1 · Vn+i−1(τ, t)+

+D1
xGi(s, x, τ, ri)|x=ri−1

· Vi(τ, t)
]
dτ, i = 2, n+ 1,

D1
xu

(i)(s, ri−, t) =
Vi(s, t)

bi(s, ri)
+

t∫
s

[
D1
xGi(s, x, τ, ri−1)|x=ri · Vn+i−1(τ, t)+

+D1
xGi(s, x, τ, ri)|x=ri · Vi(τ, t)

]
dτ, i = 1, n,(11)

Notice that the existence of integrals on the right side of (11) follows from the inequal-
ity (0 ≤ s < t ≤ T )

(12) |D1
xGi(s, rj , τ, rk)| ≤ C(τ − s)−1+α

2 , j = i− 1, i, k = i− 1, i.

Thus, in order to solve the conjugation problem (3)-(6) it remains to determine the
unknowns Vi, i = 1, 2n. We find these functions from conjugation conditions (5), (6).

Substituting instead of function u its expression from the right side of (9) into (5), we
get the following system of n Volterra integral equations of the first kind for Vi:

(13)

t∫
s

[
Gi(s, ri, τ, ri)Vi(τ, t)−Gi+1(s, ri, τ, ri)Vn+i(τ, t)

]
dτ+

+

t∫
s

[
Gi(s, ri, τ, ri−1)Vn+i−1(τ, t)−Gi+1(s, ri, τ, ri+1)Vi+1(τ, t)

]
dτ = Φi(s, t), i = 1, n.

where
Φi(s, t) = u

(i+1)
0 (s, ri, t)− u(i)

0 (s, ri, t).

Regularization of equations of system (13) can be performed by Holmgren transform
([15]). This transform is defined by integro-differential operator E which acts by the
following rule

(14) E(s, t)f =

√
2

π

∂

∂s

t∫
s

(τ − s)− 1
2 f(τ, t)dτ, 0 ≤ s < t ≤ T.

Application of the operator E to both sides of each equation of system (13) gives the
equivalent system of Volterra integral equations of the second kind of the form

(15)
Vi(s, t)√
bi(s, ri)

− Vn+i(s, t)√
bi+1(s, ri)

+

+

i+1∑
j=i

t∫
s

[
Mi,j(s, τ)Vj(τ, t)− M̂i,n+j−1(s, τ)Vn+j−1(τ, t)

]
dτ = Φ̂i(s, t), i = 1, n,

where

Φ̂i(s, t) = E(s, t)Φi =

√
2

π

∂

∂s

t∫
s

(τ − s)− 1
2 Φi(τ, t)dτ,

Mi,i(s, τ) = −
√

2

π

∂

∂s

τ∫
s

(u− s)− 1
2Z ′i(u, ri, τ, ri)du,
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Mi,i+1(s, τ) =

√
2

π

∂

∂s

τ∫
s

(u− s)− 1
2Gi(u, ri, τ, ri+1)du,

and kernels M̂i,n+i and M̂i,n+i−1 are defined analogously to Mi,i and Mi,i+1 with func-
tions Z ′i(u, ri, τ, ri) and Gi(u, ri, τ, ri+1) replaced by Z ′i+1(u, ri, τ, ri) and Gi(u, ri, τ, ri−1)
respectively.

Let us consider right sides of equations of system (15). Since the function Φi(τ, t) is

differentiable with respect to variable τ when 0 ≤ τ < t, it is easy to get for Φ̂i(s, t) the
following representation:

(16) Φ̂i(s, t) = − 1√
2π

t∫
s

(τ − s)− 3
2 [Φi(τ, t)− Φi(s, t)]dτ+

+

√
2

π
(t− s)− 1

2 Φi(s, t), i = 1, n.

Splitting the integral on the right side of (16) into two
t∫
s

=

s+t
2∫
s

+
t∫

s+t
2

and applying the

inequality (10) with r = 0, p = 0 to the first one (as well as to the very function Φi(s, t))
and mean value theorem and then inequality (10) with r = 1, p = 0 to the second one,
we obtain

(17) |Φ̂i(s, t)| ≤ C‖ϕ‖(t− s)−
1
2 , i = 1, n,

where 0 ≤ s < t ≤ T .
By the previous considerations and the inequalities (8), one can also estimate kernels

Mi,j(s, τ) and M̂i,n+j−1(s, τ), i = 1, n, j = i, i + 1, of the integrals on the left side of
system of equation (15). Consequently we make sure that all of them satisfy estimation
of the form (12).

We obtain one more system of n Volterra integral equations of the second kind for
Vi, i = 1, 2n, upon substituting the expressions from the right side of (9) into conjugation
conditions (6) and using, at the same time, the relation (11). This system of equations
is as follows:

(18)
qi,i(s)

bi(s, ri)
Vi(s, t) +

qi,i+1(s)

bi+1(s, ri)
Vn+i(s, t)+

+

i+1∑
j=i

t∫
s

[
Ni,j(s, τ)Vj(τ, t) + N̂i,n+j−1(s, τ)Vn+j−1(τ, t)

]
dτ = Ψi(s, t), i = 1, n,

where

(19) Ψi(s, t) =

i+1∑
j=i

[
(−1)i+jqi,j(s)D

1
xu

(j)
0 (s, ri, t)−

∫
Dj

(u
(j)
0 (s, ri, t)−

− u(j)
0 (s, y, t))µi(s, dy)

]
,

Ni,j(s, τ) = (−1)i+jqi,j(s)D
1
xGj(s, ri, τ, rj)+

∫
Dj

(
Z ′j(s, ri, τ, rj)−Z ′j(s, y, τ, rj)

)
µi(s, dy)+

+

∫
Dj

(
Zj(s, ri, τ, rj)− Zj(s, y, τ, rj)

)
µi(s, dy), j = i, i+ 1,

and kernel N̂i,n+j−1(s, τ) is defined analogously to Ni,j(s, τ) with rj replaced by rj−1.
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In the system of equations (18) the right sides Ψi(s, t) are continuous functions in

domain 0 ≤ s < t ≤ T and for them just as for functions Φ̂i(s, t) the inequality (17)
holds with constant C depending on δ. This assertion for the first term in square brackets
in the expression for Ψi(s, t) is an easy consequence of properties of functions qi,j(s) and
the inequality (10) with r = 0, p = 1. To estimate the integral term in the expression
for Ψi(s, t), write it in the form∫
Dj

(
u

(j)
0 (s, ri, t)− u(j)

0 (s, y, t)
)
µi(s, dy) =

=

∫
Dδj (ri)

(
u

(j)
0 (s, ri, t)− u(j)

0 (s, y, t)
)
µi(s, dy)+

+

∫
Dj\Dδj (ri)

(
u

(j)
0 (s, ri, t)− u(j)

0 (s, y, t)
)
µi(s, dy).

Then, estimating the integral over Dδ
j (ri), taking into account the condition b), mean

value theorem for difference u
(j)
0 (s, ri, t) − u(j)

0 (s, y, t) and the inequality (10) with r =
0, p = 1, and the integral over Dj \Dδ

j (ri), using the condition b) and inequalities (10)

with r = 0, p = 1 applied separately to each function u
(j)
0 (s, ri, t) and u

(j)
0 (s, y, t), we get∣∣∣∣∣∣∣

∫
Dδj (ri)

(
u

(j)
0 (s, ri, t)− u(j)

0 (s, y, t)
)
µi(s, dy)

∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣
∫

Dδj (ri)

Dyu
(j)
0 (s, y + θ(ri − y), t)(ri − y)µi(s, dy)

∣∣∣∣∣∣∣ ≤
≤ C‖ϕ‖(t− s)− 1

2

∫
Dδj (ri)

|y − ri|µi(s, dy) ≤ C1(δ)‖ϕ‖(t− s)− 1
2 ,

∣∣∣∣∣∣∣
∫

Dj\Dδj (ri)

(
u

(j)
0 (s, ri, t)− u(j)

0 (s, y, t)
)
µi(s, dy)

∣∣∣∣∣∣∣ ≤
≤

∫
Dj\Dδj (ri)

(
|u(j)

0 (s, ri, t)|+ |u(j)
0 (s, y, t)|

)
µi(s, dy) ≤

≤ C‖ϕ‖
∫

Dj\Dδj (ri)

µi(s, dy) ≤ C2(δ)‖ϕ‖.

The last two inequalities together with the inequality for (−1)i+jqi,j(s)D
1
xu

(j)
0 (s, ri, t)

prove the estimation (17) for functions Ψi(s, t), i = 1, . . . , n.
Concerning the kernels of integrals on the left sides of equalities (18), they contain

terms with non-integrable singularity, except terms for which the inequality (12) holds.
We say about the integral term

(20) Ii,j(s, τ) =

∫
Dj

(Zj(s, ri, τ, rj)− Zj(s, y, τ, rj))µi(s, dy)
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on the right side of the expression for Ni,j(s, τ) and about analogous term (let us denote

it by Îi,n+i−1(s, τ)) in the expression for N̂i,n+j−1(s, τ).
Indeed, if we take into account the condition b) and the representation

Ii,j(s, τ) =

∫
Dδj (ri)

(Zj(s, ri, τ, rj)− Zj(s, y, τ, rj))µi(s, dy)+

+

∫
Dj\Dδj (ri)

(Zj(s, ri, τ, rj)− Zj(s, y, τ, rj))µi(s, dy) = I
(1)
i,j (s, τ) + I

(2)
i,j (s, τ),

then, applying mean value theorem to the difference Zj(s, ri, τ, rj) − Zj(s, y, τ, rj) and

first inequality in (8) with r = 0, p = 1 in the expression for I
(1)
i,j , and first inequality in

(8) with r = 0, p = 0 to each function Zj(s, ri, τ, rj) and Zj(s, y, τ, rj) in the expression

for I
(2)
i,j , we obtain the estimation (0 ≤ s < τ ≤ t ≤ T )

(21) |Ii,j(s, τ)| ≤ C(τ − s)−1,

where constant C just as in the estimation (17) for function Ψi(s, t) except its dependence
on T and constants from conditions 1)-3) depends also on δ.

It is clear that the same inequality holds also for the function Îi,n+i−1(s, τ).
We shall see presently that it is nevertheless possible to obtain the solution of (15), (18)

by the ordinary method of successive approximations. Before establishing this important
fact, we rewrite system (15), (18) in the form
(22)

Vi(s, t) =

i+1∑
j=i

t∫
s

[
Ki,j(s, τ)Vj(τ, t)dτ + K̂i,n+j−1(s, τ)Vn+j−1(τ, t)

]
dτ = fi(s, t),

Vn+i(s, t) =

i+1∑
j=i

t∫
s

[
Ri,j(s, τ)Vj(τ, t)dτ + R̂i,n+j−1(s, τ)Vn+j−1(τ, t)

]
dτ = fn+i(s, t),

(i = 1, n) where

fi(s, t) = di(s)
(
Ψi(s, t) +

qi,i+1(s)√
bi+1(s, ri)

Φ̂i(s, t)
)
,

Ki,j(s, τ) = −di(s)
(
Ni,j(s, τ) +

qi,i+1(s)√
bi+1(s, ri)

Mi,j(s, τ)
)

K̂i,n+j−1(s, τ) = −di(s)
(
N̂i,n+j−1(s, τ)− qi,i+1(s)√

bi+1(s, ri)
M̂i,n+j−1(s, τ)

)
di(s) =

bi(s, ri)
√
bi+1(s, ri)

qi,i(s)
√
bi+1(s, ri) + qi,i+1(s)

√
bi(s, ri)

,

and functions fn+i(s, t), Ri,j(s, τ) and R̂i,n+j−1(s, τ) are defined by formulas analogous

to formulas for fi(s, t), Ki,j(s, τ) and K̂i,n+j−1(s, τ) respectively, with expressions di(s)

and
qi,i+1(s)√
bi+1(s,ri)

replaced by li(s) =
bi+1(s,ri)

√
bi(s,ri)

qi,i(s)
√
bi+1(s,ri)+qi,i+1(s)

√
bi(s,ri)

and − qi,i(s)√
bi(s,ri)

re-

spectively.
By the above properties of functions Ψi(s, t), Φ̂i(s, t), i = 1, n, and the conditions

1), a), b), we have that the functions fi(s, t), i = 1, 2n, are continuous in s ∈ [0, t) and for
them the estimation

(23) |fi(s, t)| ≤M(δ)‖ϕ‖(t− s)− 1
2
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(M(δ) positive constant) holds in domain 0 ≤ s < t ≤ T for any δ > 0.
Let us investigate kernels of integral equations in (22). All of them are estimated by

the same scheme. Consider first the function Ki,j(s, τ), i = 1, n, j = i, i + 1. We shall
use for it the following representation:

(24) Ki,j(s, τ) = K
(1)
i,j (s, τ) +K

(2)
i,j (s, τ),

where

K
(1)
i,j (s, τ) = −di(s)

[
qi,i+1(s)√
bi+1(s, ri)

Mi,j(s, τ) + (−1)i+jqi,j(s)D
1
xGj(s, ri, τ, rj)+

+

∫
Dδj (ri)

(Gj(s, ri, τ, rj)−Gj(s, y, τ, rj))µi(s, dy)+

+

∫
Dj\Dδj (ri)

(Z ′j(s, ri, τ, rj)− Z ′j(s, y, τ, rj))µi(s, dy)

]
,

K
(2)
i,j (s, τ) = −di(s)

∫
Dj\Dδj (ri)

(Zj(s, ri, τ, rj)− Zj(s, y, τ, rj))µi(s, dy).

Then, using estimations (8), (12), condition b) and, in addition, the mean value
theorem for differences in integrals over the domain Dj \Dδ

j (ri), we obtain inequalities

|K(1)
i,j (s, τ)| ≤ N(δ)(τ − s)−1+α

2 , i = 1, n, j = i, i+ 1,(25)

|K(2)
i,j (s, τ)| ≤ C(δ)(τ − s)−1, i = 1, n, j = i, i+ 1,(26)

which are true for 0 ≤ s < τ ≤ T and some constants N(δ) and C(δ).
Similar representations can be written also for other kernels of system of integral

equations (22). Furthermore, in equalities

K̂i,n+j−1(s, τ) = K̂
(1)
i,n+j−1(s, τ) + K̂

(2)
i,n+j−1(s, τ),

Ri,j(s, τ) = R
(1)
i,j (s, τ) +R

(2)
i,j (s, τ),

R̂i,n+j−1(s, τ) = R̂
(1)
i,n+j−1(s, τ) + R̂

(2)
i,n+j−1(s, τ)

functions

K̂
(1)
i,n+j−1(s, τ), R

(1)
i,j (s, τ), R̂

(1)
i,n+j−1(s, τ), and K̂

(2)
i,n+j−1(s, τ), R

(2)
i,j (s, τ), R̂

(2)
i,n+j−1(s, τ)

satisfy inequalities (25) and (26) respectively.
In the sequel we shall need the exact expressions only for second terms in these rep-

resentations. In particular, the function K̂
(2)
i,n+j−1(s, τ) is expressed by formula

(27) K̂
(2)
i,n+j−1(s, τ) = −di(s)

∫
Dj\Dδj (ri)

(Zj(s, ri, τ, rj−1)− Zj(s, y, τ, rj−1))µi(s, dy).

Similarly, functions R
(2)
i,j (s, τ) and R̂

(2)
i,n+j−1(s, τ) are defined by replacing in formulas for

K
(2)
i,j (s, τ) and K̂

(2)
i,n+j−1(s, τ) the factor di(s) by li(s).

Let us prove that the system of equations (22) has the solution Vi(s, t), i = 1, 2n, of
the form

(28) Vi(s, t) =

∞∑
k=0

V
(k)
i (s, t), Vn+i(s, t) =

∞∑
k=0

V
(k)
n+i(s, t), i = 1, n,

where
V

(0)
i (s, t) = fi(s, t), V

(0)
n+i(s, t) = fn+i(s, t), i = 1, n,
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and (i = 1, n, k ∈ N)

(29)

V
(k)
i (s, t) =

i+1∑
j=i

t∫
s

[Ki,j(s, τ)V
(k−1)
j (τ, t) + K̂i,n+j−1(s, τ)V

(k−1)
n+j−1(τ, t)]dτ,

V
(k)
n+i(s, t) =

i+1∑
j=i

t∫
s

[Ri,j(s, τ)V
(k−1)
j (τ, t) + R̂i,n+j−1(s, τ)V

(k−1)
n+j−1(τ, t)]dτ.

Let us estimate V
(1)
i (s, t) and V

(1)
n+i(s, t), i = 1, n. To this end, taking into ac-

count (24) as well as the analogous representations for K̂i,n+j−1(s, τ), Ri,j(s, τ) and

R̂i,n+j−1(s, τ), j = i, i+ 1, we get the relation

(30)

V
(1)
i (s, t) =

i+1∑
j=i

t∫
s

[K
(1)
i,j (s, τ)fj(τ, t) + K̂

(1)
i,n+j−1(s, τ)fn+j−1(τ, t)]dτ+

+

i+1∑
j=i

t∫
s

[K
(2)
i,j (s, τ)fj(τ, t) + K̂

(2)
i,n+j−1(s, τ)fn+j−1(τ, t)]dτ,

V
(1)
n+i(s, t) =

i+1∑
j=i

t∫
s

[R
(1)
i,j (s, τ)fj(τ, t) + R̂

(1)
i,n+j−1(s, τ)fn+j−1(τ, t)]dτ+

+

i+1∑
j=i

t∫
s

[R
(2)
i,j (s, τ)fj(τ, t) + R̂

(2)
i,n+j−1(s, τ)fn+j−1(τ, t)]dτ.

Take the function V
(1)
i (s, t) from (30). Denote by J

(1)
i and J

(2)
i the integral terms on

the left side of its expression. Using (23) and (25), we find that

(31) |J (1)
i | ≤M(δ)‖ϕ‖ · 2N(δ)

i+1∑
j=i

t∫
s

(t− τ)−
1
2 (τ − s)−1+α

2 dτ =

= M(δ)‖ϕ‖(t− s)− 1
2 · 4N(δ)

Γ(α2 )Γ( 1
2 )

Γ( 1+α
2 )

(t− s)α2 , i = 1, n.

To estimate J
(2)
i , notice that

|Zj(s, ri, τ, rj)− Zj(s, y, τ, rj)| =

=

∣∣∣∣[2πbj(τ, rj)(τ − s)]− 1
2

1∫
0

d

dθ
exp

{
− [(rj − y) + θ(y − ri)]2

2bj(τ, rj)(τ − s)

}
dθ

∣∣∣∣ ≤
≤ |y − ri|√

2πb · b(τ − s) 3
2

1∫
0

|(rj − y) + θ(y − ri)| exp

{
− [(rj − y) + θ(y − ri)]2

2B(τ − s)

}
dθ

and

di(s) ≤
B
√
B√

b · q0

, i = 1, n, s ∈ [0, T ].

Here b and B are the constants from condition 1) and

q0 = min
i

min
s

(qi,i(s) + qi,i+1(s)).
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Next, in view of the estimation (23) and the relation

t∫
s

(t− τ)−
1
2 (τ − s)− 3

2 exp

{
− [(rj − y) + θ(y − ri)]2

2B(τ − s)

}
dτ =

=

√
2πB

|(rj − y) + θ(y − ri)|
√
t− s

exp

{
− [(rj − y) + θ(y − ri)]2

2B(t− s)

}
,

one can show that

(32) |J (2)
i | ≤M(δ)‖ϕ‖(t− s)− 1

2 d · λi(δ, s), i = 1, n,

where

d =
2

q0

(
B

b

)2

, λi(δ, s) =

i+1∑
j=i

∫
Dj\Dδj (ri)

|y − ri|µi(s, dy).

Consider the expression d · λi(δ, t). From condition b) it follows that there exists a
sufficiently small δ = δ0 > 0 such that for all i = 1, n and s ∈ [0, T ]

(33) d · λi(δ0, s) ≤ d0 < 1.

In the sequel we shall assume that δ = δ0 is substituted into all the above constants
depending on δ. Combining (33), (32) and (31), we arrive at the inequality (0 ≤ s < t ≤
T )

(34) |V (1)
i (s, t)| ≤M(δ0)‖ϕ‖(t− s)− 1

2

[
4N(δ0)Γ(α2 )Γ( 1

2 )

Γ( 1+α
2 )

(t− s)α2 + d0

]
.

It is easy to verify that the same inequality holds also for the function V
(1)
n+i(s, t).

Letting on the right side of (34)

M = M(δ0), N = N(δ0), hs,t =
4NΓ(α2 )Γ( 1

2 )

Γ( 1+α
2 )

(t− s)α2

and proceeding by induction, we have

|V (k)
i (s, t)| ≤M‖ϕ‖(t− s)− 1

2

k∑
m=0

(
k
m

)
h

(k−m)
s,t dm0 , k ∈ {0} ∪ N, i = 1, 2n,

where

h
(m)
s,t =

(
4NΓ(α2 )

)m
Γ( 1

2 )

Γ( 1+mα
2 )

(t− s)m·α2 , m = 0, k.

Hence for 0 ≤ s < t ≤ T, i = 1, 2n

(35)

∞∑
k=0

|V (k)
i (s, t)| ≤M‖ϕ‖(t− s)− 1

2

∞∑
k=0

k∑
m=0

(
k
m

)
h

(k−m)
s,t dm0 =

= M‖ϕ‖(t− s)− 1
2

∞∑
k=0

h
(k)
s,t

∞∑
m=0

(
k+m
m

)
dm0 =

= M‖ϕ‖(t− s)− 1
2

∞∑
k=0

h
(k)
s,t

(1− d0)k+1
=

= M‖ϕ‖(t− s)− 1
2

∞∑
k=0

(
4NΓ(α2 )

)k
Γ( 1

2 )

Γ( 1+kα
2 )(1− d0)k+1

.
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The inequality (35) ensures the convergence of series (28) in s ∈ [0, t) and gives for
Vi(s, t) the estimation

(36) |Vi(s, t)| ≤ C‖ϕ‖(t− s)−
1
2 , i = 1, 2n,

where 0 ≤ s < t ≤ T and C is some constant.
From estimations (8) and (36) it follows that simple layer potentials in (9) exist and

satisfy initial conditions lim
s↑t

u(i)(s, x, t) = 0 and inequalities (10) with r = p = 0. This

means that the function u(s, x, t) defined by relations (9), (28) is the required classical
solution of the problem (3)-(6). The proof of its uniqueness is based on maximum
principle for parabolic equations and is a repetition of the proof of the analogous assertion
in [12] with obvious changes.

Thus, we have proved the following theorem.

Theorem 3.1. Let the coefficients of operators A
(i)
s , s ∈ [0, T ], i = 1, n+ 1, in (1)

satisfy conditions 1) − 3) and coefficients qi,i(s), qi,i+1(s) and measures µi, i = 1, n,
in (2) have properties a), b). Then for any function ϕ ∈ Cb(R) there exist the unique
solution u(s, x, t) of the conjugation problem (3)-(6) which belongs to the class C1,2([0, t)×
∪n+1
i=1 Di) ∩ C([0, t] × R). Furthermore, this solution is of the form (9), (28) and for it

the estimation

|u(s, x, t)| ≤ C‖ϕ‖, 0 ≤ s < t ≤ T, x ∈ R,
holds.

4. Construction of Feller semigroup

We introduce the two-parameter family of linear operators Ts,t, 0 ≤ s < t ≤ T acting
on the space Cb(R) by the rule:

(37) Ts,tϕ(x) = u(s, x, t, ϕ),

where u(s, x, t, ϕ) ≡ u(s, x, t) is the solution of problem (3)-(6) defined by formulas (9),
(28).

Let us show that the family of operators Ts,t is the required semigroup. To this end,
notice first that operators Ts,t have the following property: if the sequence ϕn ∈ Cb(R)
is such that lim

n→∞
ϕn(x) = ϕ(x) for all x ∈ R and, in addition, sup

n
‖ϕn‖ < ∞, then

lim
n→∞

Ts,tϕn(x) = Ts,tϕ(x) for all 0 ≤ s < t ≤ T, x ∈ R. The proof of this property is

based on well known assertions of calculus on passage of the limit under the summation
and integral signs (here this concerns series (28) and integrals on the right side of equality
(9)). This property allows us to prove the next properties of the operator family Ts,t,
without loss of generality, under the assumption that the function ϕ has a compact
support.

Now we prove that the operators Ts,t, 0 ≤ s < t ≤ T, remain a cone of nonnegative
functions invariant.

Lemma 4.1. If ϕ ∈ Cb(R) and ϕ(x) ≥ 0 for all x ∈ R, then Ts,tϕ(x) ≥ 0 for all
0 ≤ s < t ≤ T, x ∈ R.

Proof. Let ϕ be any nonnegative function in Cb(R) with a compact support. Denote by
γ the minimum of Ts,tϕ(x) in the domain (s, x) ∈ [0, t]×R and assume that γ < 0. From
the minimum principle it follows that there exist s0 ∈ (0, t), i0 ∈ {1, . . . , n} such that
Ts0,tϕ(ri0) = γ. But then the inequalities

∂Ts0,tϕ(ri0−)

∂x
≤ 0,

∂Ts0,tϕ(ri0+)

∂x
≥ 0,
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Di0∪Di0+1

(Ts0,tϕ(ri0)− Ts0,tϕ(y))µi(s0, dy) ≤ 0

must hold. Furthermore, Theorem 14 in [16, p. 69] assures us that

∂Ts0,tϕ(ri0−)

∂x
< 0,

∂Ts0,tϕ(ri0+)

∂x
> 0.

Next, since qi0,i0(s0) + qi0,i0+1(s0) > 0, it becomes clear that in the case of s = s0 the
fulfillment of the conjugation condition (6) is impossible. The contradiction we arrived
at indicates that γ ≥ 0. This completes the proof of the lemma. �

Notice also that Ts,tϕ0(x) = 1 for all 0 ≤ s < t ≤ T, x ∈ R provided ϕ0(x) ≡ 1. This
property together with the assertion of lemma 4.1 allow us to assert that operators Ts,t
for all 0 ≤ s < t ≤ T are contractive, that is,

‖Ts,tϕ‖ ≤ ‖ϕ‖.

Finally, we show that the operator family Tst has the semigroup property

Ts,t = Ts,τTτ,t, 0 ≤ s < τ < t ≤ T.

This property is a consequence of the assertion of uniqueness of the solution of the
problem (3)-(6). Indeed, to find u(s, x, t) = Ts,tϕ(x), when it is given that lim

s↑t
u(s, x, t) =

ϕ(x), one can solve the problem first in time interval [τ, t] and then solve it in the time
interval [s, τ ] with that initial function u(τ, x, t) = Tτ,tϕ(x) which was obtained; in other
words, Ts,tϕ(x) = Ts,τ (Tτ,tϕ)(x), ϕ ∈ Cb(R), or Ts,t = Ts,τTτ,t.

The above properties of operators Tst imply the following assertion (see. [18, Ch.II,
§1]).

Theorem 4.1. Let the conditions of Theorem 3.1 hold. Then the two-parameter family
of operators Ts,t, 0 ≤ s ≤ t ≤ T , defined by formula (37), describes the inhomogeneous
Feller process on R which coincides on each domain Di, i = 1, n+ 1 with the diffu-

sion process generated by the operator A
(i)
s and its behavior at points r1, r2, . . . , rn is

determined by Feller-Wentzell conjugation condition (2).
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