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ALEXANDER IKSANOV AND SERGUEI POLOTSKIY

TAIL BEHAVIOR OF SUPREMA OF PERTURBED RANDOM

WALKS

We prove a lattice version of Goldie’s result on tail behavior of suprema of perturbed

random walks.

1. Introduction

Let (ξk, ηk)k∈N be a sequence of i.i.d. two-dimensional random vectors with generic
copy (ξ, η). No condition is imposed on the dependence structure between ξ and η. Let
(Sn)n∈N0

be the zero-delayed ordinary random walk with increments ξn for n ∈ N, i.e.,
S0 = 0 and Sn = ξ1 + . . . + ξn, n ∈ N. Then define its perturbed variant (Tn)n∈N, that
we call perturbed random walk (PRW), by

(1) Tn := Sn−1 + ηn, n ∈ N.

Recently it has become a rather popular object of research. A non-exhaustive list of recent
publications includes [1, 9, 10, 13, 14] as well as the papers on tail behavior cited below.
The so defined perturbed random walks are ubiquitous in applied probability. These
are closely related to perpetuities, the Bernoulli sieve, the GEM distribution and the
Poisson-Dirichlet distribution; processes with regenerative increments and many other
models (see [2] for more details).

Set T∗ := supn≥1 Tn and note that T∗ is a.s. finite if, and only if, lim
n→∞

Tn = −∞ a.s.

According to Theorem 2.1 in [2] the latter is equivalent to

lim
n→∞

Sn = −∞ a.s. and

∫
(0,∞)

x∫ x
0
P{−ξ > y}dy

dP{η ≤ x} <∞.

Often, a simpler sufficient condition suffices: Eξ ∈ (−∞, 0) and Eη+ <∞.
We are interested in tail behavior of T∗ in one situation that remained untouched in

the previous works on the same topic [4, 5, 7, 8, 11, 12, 15]. Recall that a distribution
is called nonlattice if it is not concentrated on any lattice δZ, δ > 0. A distribution is
called δ-lattice if it is concentrated on the lattice δZ and not concentrated on any lattice
δ1Z for δ1 > δ.

Theorem 1.1 given next which treats the nonlattice case is contained in Theorem 5.2
of [5]. It is stated here for the ease of comparison with Theorem 1.2 which treats the
lattice case and forms the main contribution of the present paper.

Theorem 1.1. Suppose that there exists positive a such that

(2) Eeaξ = 1, Eeaξξ+ <∞ and Eeaη <∞.
If the distribution of eξ is nonlattice, then

lim
x→∞

eaxP{T∗ > x} = C,

where C := E
(
eaη1 − ea(ξ1+T ′∗)

)
1{ξ1+T ′∗≤η1} ∈ (0,∞) and T ′∗ := supn≥2(Tn − ξ1).
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Theorem 1.2. Suppose that (2) holds. If the distribution of eξ is δ-lattice, then, for
each x ∈ R,

lim
k→∞

e(δk+x)aP{T∗ > δk + x} = C(x)

for some positive δ-periodic function C(x).

2. Proof of Theorem 1.2

We need a version of the key renewal theorem for the lattice distributions concentrated
on the whole line. Even though the result is widely used in the literature, we are not
aware of any reference which would give a proof.

Proposition 2.1. Assume that ξ has a δ-lattice distribution concentrated on R and
µ = Eξ ∈ (0,∞). Let f : R → R be a function that satisfies

∑
j∈Z |f(x + δj)| < ∞ for

some x ∈ R. Then

lim
n→∞

E
∑
k≥0

f(x+ δn− Sk) = µ−1δ
∑
j∈Z

f(x+ δj).

Proof. By considering f+ and f− separately, without loss of generality f may be assumed
nonnegative.

Suppose first that ξ ≥ 0 a.s. Set u(δn) :=
∑
k≥0 P{Sk = δn}. By the classical

Blackwell theorem limn→∞ u(δn) = µ−1δ. Hence, for any ε ∈ (0, µ−1δ) there exists a
j0 ∈ N such that

µ−1δ − ε ≤ u(δj) ≤ µ−1δ + ε

whenever j ≥ j0 + 1. Using this we obtain

E
∑
k≥0

f(x+ δn− Sk)

=

j0∑
j=0

f
(
x+ δ(n− j)

)
u(δj) +

∑
j≥j0+1

f
(
x+ δ(n− j)

)
u(δj)

≤
j0∑
j=0

f
(
x+ δ(n− j)

)
u(δj) + (µ−1δ + ε)

n−j0−1∑
j=−∞

f
(
x+ δj

)
.(3)

The assumption
∑
j∈Z f(x+ δj) <∞ ensures lim

n→∞
f(x+ δn) = 0, whence

lim sup
n→∞

E
∑
k≥0

f(x+ δn− Sk) ≤ µ−1δ
∑
j∈Z

f(x+ δj)

on letting in (3) first n → ∞ and then ε to zero. The converse inequality for the lower
limit follows analogously.

The general case when ξ takes values of both signs will now be handled by reducing
it to the case ξ > 0 a.s. via a stopping time argument. We use the representation

E
∑
k≥0

f(x+ δn− Sk) = E
∑
j≥0

τj+1−1∑
i=τj

f(x+ δn− Si) = E
∑
k≥0

f∗(x+ δn− Sτk)

where (τk)k∈N0
are successive strictly increasing ladder epochs for (Sn) given by τ0 = 0

and τn = inf{k > τn−1 : Sk > Sτn−1
} for n ∈ N, and f∗(x) := E

∑τ−1
j=0 f(x− Sj), x ∈ R

(we write τ for τ1). The sequence (Sτk)k∈N0
is an ordinary random walk with positive
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jumps having the same distribution as Sτ . Observe that ESτ = µEτ by Wald’s identity,
and that the distribution of Sτ is δ-lattice. Since

∑
j∈Z

f∗(x+ δj) =
∑
j∈Z

E
τ−1∑
k=0

∑
i≤0

f
(
x+ δ(j − i)

)
1{Sk=δi}

= E
τ−1∑
k=0

∑
i≤0

1{Sk=δi}
∑
j∈Z

f(x+ δ(j − i))

= Eτ
∑
j∈Z

f(x+ δj) <∞,

an application of the already proved result in the case ξ ≥ 0 a.s. yields

lim
n→∞

E
∑
k≥0

f(x+ δn− Sk) =
δ

ESτ

∑
j∈Z

f∗(x+ δj) =
δ

µ

∑
j∈Z

f(x+ δj).

The proof of Proposition 2.1 is complete. �

The referee kindly reminded us that another proof of Proposition 2.1 could be based
on the Blackwell theorem for the whole line.

Proof of Theorem 1.2. Assume that the distribution of eξ is δ-lattice. We shall use the
random variables which appear in the following representation

T∗ = max(η1, ξ1 + sup(η2, ξ2 + η3, ξ2 + ξ3 + η4, . . .)) = max(η1, ξ1 + T ′∗) a.s.

where T ′∗ = supn≥2(Tn − ξ1) is independent of (ξ1, η1) and has the same distribution as
T∗.

Set, for x ∈ R,

P (x) := eaxP{T∗ > x}

and

Q(x) := eax
(
P{T∗ > x} − P{ξ1 + T ′∗ > x}

)
.

Since

eaxP{ξ1 + T ′∗ > x} =

∫
R
P (x− t)dP{ξ′ ≤ t}, x ∈ R,

where ξ′ is a random variable with distribution P{ξ′ ∈ dx} = eaxP{ξ ∈ dx}, we conclude
that P is a (locally bounded) solution to the renewal equation

(4) P (x) =

∫
R
P (x− t)dP{ξ′ ≤ t}+Q(x), x ∈ R.

It is well-known that

P (x) = E
∑
j∈Z

Q(x− S′j), x ∈ R,

where (S′k)k∈N0 is a zero-delayed ordinary random walk with jumps having the distri-
bution of ξ′. Observe that Eebξξ− < ∞ for all b > 0. In particular, Eeaξξ− < ∞
which in combination with the second condition in (2) ensures Eeaξξ ∈ R. The convexity
of m(x) := Eexξ on [0, a] together with m(0) = m(a) = 1 implies that m is increas-
ing at the left neighborhood of a whence the left derivative m′(a) is positive. Since
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Eξ′ = Eeaξξ = m′(a), we have proved that Eξ′ ∈ (0,∞). Further,

0 ≤ e−ax
∑
j∈Z

Q(x+ δj)

=
∑
j∈Z

eaδj
(
P{max(η1, ξ1 + T ′∗) > x+ δj} − P{ξ1 + T ′∗ > x+ δj}

)
=

∑
j∈Z

eaδj
(
P{η1 > x+ δj, ξ1 + T ′∗ < η1} − P{ξ1 + T ′∗ > x+ δj, ξ1 + T ′∗ < η1}

)
≤

∑
j∈Z

eaδjP{η1 > x+ δj}.

The assumption Eeaη < ∞ guarantees that the last series converges for each x ∈ R.
Thus, we have checked that the series

∑
j∈ZQ(x+ δj) converges for each x ∈ R.

By the key renewal theorem for the lattice case (Proposition 2.1)

(5) lim
n→∞

P (x+ δn) =
δ

Eeaξξ
∑
j∈Z

Q(x+ δj) =: C(x).

It remains to show that C(x) > 0. To this end, pick y ∈ R such that p := P{η > y} > 0.
For any fixed x > 0, there exists i ∈ Z such that x− y ∈ [δi, δ(i+ 1)). With the help of
Lemma1 2.2 in [3] we obtain, for large enough n,

P (x+ δn) = ea(x+δn)P{T∗ > x+ δn}
≥ peayea(x−y+δn)P{sup

k≥0
Sk > x− y + δn}

≥ pea(y−1)eaδ(i+n+1)P{sup
k≥0

Sk > δ(n+ i+ 1)}.

Therefore, it suffices to prove that

(6) lim inf
n→∞

eaδnP{sup
k≥0

Sk > δn} > 0.

For x ≥ 0, set τ(x) := inf{k ∈ N : Sk > x}, with the usual convention that inf � =∞,
and τ := τ(0). Define a new probability measure2 Pa by

(7) Eah(S0, . . . , Sk) = EeaSkh(S0, . . . , Sk), k ∈ N
for each Borel function h : Rk+1 → [0,∞), where Ea is the corresponding expectation.
Since the P-distribution of ξ′ is the same as the Pa-distribution of S1, we have EaS1 =
Eξ′ ∈ (0,∞). Therefore, (Sn)n∈N0

, under Pa, is an ordinary random walk with the
positive drift whence Eτ(x) < ∞ for each x ≥ 0 and thereupon EaSτ = EaS1Eaτ ∈
(0,∞). Further, for each x > 0,

eaxP{sup
k≥0

Sk > x} = eaxP{τ(x) <∞} = eaxEae−aSτ(x) 1{τ(x)<∞}

= Eae−a(Sτ(x)−x)

having utilized (7) for the second equality. Since S1, under Pa, has a δ-lattice distribution,
an application of Theorem 10.3(ii) on p. 104 in [6] yields Sτ(δn) − δn converges in Pa-

distribution as n → ∞ to a random variable Y with Pa{Y = δk} = δ
EaSτ Pa{Sτ ≥ δk},

k ∈ N0. This immediately implies that

lim
n→∞

eaδnP{sup
k≥0

Sk > δn} = lim
n→∞

Eae−a(Sτ(δn)−δn) = Eae−aY > 0,

1This result states that P{T∗ > x} ≥ P{η > y}P{supn≥0 Sn > x− y} for all x, y ∈ R.
2This is indeed a probability measure because, in view of the first condition in (2), (eaSn )n∈N0

is a

nonnegative martingale with respect to the natural filtration.
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a result that is stronger than (6). The proof of Theorem 1.2 is complete. �

The authors thank the referee for several useful comments.
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