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V. I. BOGACHEV AND A. F. MIFTAKHOV

ON WEAK CONVERGENCE OF FINITE-DIMENSIONAL AND

INFINITE-DIMENSIONAL DISTRIBUTIONS OF RANDOM

PROCESSES

We study conditions on metrics on spaces of measurable functions under which weak

convergence of Borel probability measures on these spaces follows from weak conver-

gence of finite-dimensional projections of the considered measures.

Introduction

In the theory of stochastic processes, one often uses weak convergence of finite-dimen-
sional distributions of processes. In terms of distributions in path spaces this corresponds
to weak convergence of measures on a path space equipped with the topology of point-
wise convergence. However, in many applications this convergence turns out to be too
weak, so it becomes necessary to complement it by various additional conditions in or-
der to obtain convergence of distributions of processes in functional spaces with various
norms and metrics. For instance, C[0, 1] is a natural path space for continuous processes
on [0, 1]; convergence of finite-dimensional distributions does not imply convergence of
distributions in C[0, 1] equipped with the usual sup-norm, so it is necessary to require
additionally the uniform tightness of distributions. These problems were thoroughly
studied already 30-40 years ago (see [3], [7], [9], [10], [13], [14], [15], [16], [17], and [22]).
A significant number of the known results is covered by the following scheme: if a certain
path space X is equipped with a norm or a metric (in [9], the whole range of such metrics
is considered that imply convergence in measure), then for weak convergence in X of the
distributions Pn of processes ξn it is sufficient to have weak convergence of their finite-
dimensional distributions and the uniform tightness of the measures Pn, which means
that for each ε > 0 there is a compact set Kε ⊂ X such that Pn(X\Kε) < ε for all n.
Usually, the latter condition cannot be omitted. However, it is known (see [24] and [25])
that this condition can be omitted in the case where the path space is equipped with the
metric of convergence in measure (in place of the usual uniform metric). The proof of
this result in [24] was based on the paper [16]. We give a relatively short proof of a more
general result (see Theorem 2.1) that does not employ any other results and actually
yields also a more general assertion than in [16] (see Theorem 2.6). Corollary 2.4 par-
tially improves the results from [14]–[16], [17] on weak convergence of measures on Lp:
in place of convergence of moments as in the cited papers their uniform boundedness for
some larger exponent is required.

Our second main result, which was originally our motivation, concerns the following
question. The standard metric (or semimetric) of convergence in measure on the space
of Borel functions or on the space of continuous functions on [0, 1] has the property that
the pointwise convergence of a sequence yields convergence in this metric. In addition,
this metric is translation invariant and monotone in the sense that d(f, 0) ≤ d(g, 0)
if |f | ≤ |g|. Do there exist other metrics, not equivalent to metrics of convergence in
measure (for different measures on [0, 1]), having these properties? We prove Theorem 3.1
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that asserts that a metric with the aforementioned three properties is equivalent to the
metric of convergence in measure for some Borel measure provided that it satisfies one
additional technical condition. However, this additional condition is not necessary, so
that the question above in full generality remains open.

Let us note at once that the established property to obtain weak convergence from
convergence of finite-dimensional projections cannot hold for a norm in place of the
metric of convergence in measure. Indeed, if we take non-random processes xn ∈ C[0, 1]
with disjoint supports in the intervals [2−n, 2−n + 8−n], then their finite-dimensional
distributions, defined by values at the points t1, . . . , tk, converge weakly to the respective
finite-dimensional distributions of the identically zero process. The same is true for the
processes Cnxn for any constants Cn. If C[0, 1] is equipped with a norm p, then we can
take Cn such that p(Cnxn) → +∞, and then there is no weak convergence of Dirac’s
measures at the functions Cnxn. Therefore, in the wide range of metrics on path spaces
considered in [9] and ensuring convergence in measure, such as the uniform metric and
the Lp-metrics, only the metric of convergence in measure has the property that for this
metric it is not necessary to require additionally the uniform tightness.

1. Notation and auxiliary results

The image of a measure µ on a measurable space (X,B) under a measurable mapping
f with values in a measurable space (Y,A) is denoted by the symbol µ ◦ f−1 and defined
by the formula

µ ◦ f−1(A) = µ(f−1(A)), A ∈ A.
For a general metric space (X, d), the space P(X) of probability Borel measures on X

is equipped with the weak topology defined on the whole space M(X) of all finite Borel
measures (possibly, signed) by the seminorms of the form

q(µ) =

∣∣∣∣∫
X

f(x)µ(dx)

∣∣∣∣,
where f is a bounded continuous function on X; the set of all such functions is denoted
by Cb(X). A sequence of Borel measures µn converges weakly to a Borel measure µ if
for all f ∈ Cb(X) we have

(1.1) lim
n→∞

∫
X

f(x)µn(dx) =

∫
X

f(x)µ(dx).

If the spaceX is separable, then on the set P(X) weak convergence is metrizable; different
metrics are known that generate the weak topology on P(X); for example (see details
in [4, Chapter 8] or [11]), it is possible to use the Prohorov metric or the Kantorovich–
Rubinstein metric [18] (equivalent to the Fortet–Mourier metric [12]) defined by the
formula

d0(µ, ν) = sup

{∫
X

ϕ(x)µ(dx)−
∫
X

ϕ(x)ν(dx), ϕ ∈ Lip1(X), sup |ϕ(x)| ≤ 1

}
,

where Lip1(X) is the class of Lipschitz continuous functions ϕ on X with the Lipschitz
constant 1, i.e., |ϕ(y)− ϕ(x)| ≤ d(x, y). In the case of bounded X, one can also use the
equivalent Kantorovich metric (see [4] and [5] about such metrics) defined by

dK(µ, ν) = sup

{∫
X

ϕ(x)µ(dx)−
∫
X

ϕ(x)ν(dx), ϕ ∈ Lip1(X)

}
.

In a nonseparable case, the same is true if in place of the whole set P(X) we take only
its part consisting of tight measures, i.e., measures µ such that, for each ε > 0, there is
a compact set Kε ⊂ X such that µ(X\Kε) < ε.

It is important to note that for weak convergence of probability measures µn to a
probability measure µ it is enough to have convergence in (1.1) only for functions f of
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class Lip1(X); this is not true for signed measures. This fact implies the following known
simple condition for weak convergence (cf. [26, 1.12.3]).

Lemma 1.1. If X is separable, then for weak convergence of measures µn ∈ P(X) to a
measure µ ∈ P(X) it is enough to have equality (1.1) for functions of the form

f(x) = max(c0, c1 − d(x, y1), . . . , cn − d(x, yn)),

where c0, . . . , cn are real numbers, y1, . . . , yn ∈ X. If the space X is bounded, then it is
enough to verify (1.1) just for polynomials in the variables d(x, y1), . . . , d(x, yn), where
y1, . . . , yn ∈ X.

In the case of tight measures µn and µ the separability of X is not needed.

Proof. Let us take a countable everywhere dense set {yi}∞i=1 in X. It is readily verified
that for any bounded function f ∈ Lip1(X) such that f ≥ c we have

f(x) = sup
j∈N

max(c, f(yj)− d(x, yj)).

In the case of a bounded space X one can take sup over the values f(yj)− d(x, yj). Let
us set

fk(x) = max
j≤k

max(c, f(yj)− d(x, yj)).

By assumption, for every k ∈ N, we have the equality

lim
n→∞

∫
X

fk(x)µn(dx) =

∫
X

fk(x)µ(dx).

Since, as k → ∞, the right-hand side tends to the integral of f with respect to the
measure µ by the Lebesgue dominated convergence theorem and∫

X

fk(x)µn(dx) ≤
∫
X

f(x)µn(dx),

we obtain the inequality∫
X

f(x)µ(dx) ≤ lim inf
n→∞

∫
X

f(x)µn(dx).

By replacing f with −f we obtain the opposite inequality, which completes the proof of
the first assertion.

In the case of boundedX, any continuous function in the variables d(x, y1), . . . , d(x, yn)
is uniformly approximated by polynomials in these variables, so it suffices to verify con-
vergence of integrals only for these polynomials.

Finally, if all measures µn and µ are tight, then they are concentrated on a separable
part of the space X. �

2. Weak convergence of measures on functional spaces related to
convergence in measure

Let (T,B, λ) be a measurable space with a finite nonnegative measure λ and let
(Ω,F , P ) be a probability space. Let L0(λ) denote the space of equivalence classes
of measurable real functions on T with the metric d(·, ·) of convergence in measure λ on
T defined by the formula

d(x, y) =

∫
T

min{|x(t)− y(t)|, 1}λ(dt).

We recall that in nontrivial cases (for example, for Lebesgue measure) convergence in
this metric cannot be defined by a norm, and the space of measurable functions with this
metric is not a locally convex space (see [4, Exercise 4.7.61]). Note that the metric d is
bounded.
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We assume that the measure λ is separable, i.e., L0(λ) is separable; this is equivalent
to the separability of L1(λ) or L2(λ).

Suppose we are given a certain space F of functions on T measurable with respect
to the measure λ (not equivalence classes, like L1, but individual functions) such that
the equality almost everywhere of two functions in F implies their pointwise equality.
Examples of such spaces F are the class of continuous functions C(T ) in case of a
topological space T equipped with a Borel measure λ that does not vanish on nonempty
open sets and the class of left-continuous functions on an interval with Lebesgue measure.

Let us equip the space F with the metric d of convergence in measure λ, i.e., by the
metric from L0(λ) (although L0(λ) consists of equivalence classes). The obtained space
will be denoted by Fd. It is clear that Fd is separable.

In addition, suppose that for every t ∈ T the evaluation function x 7→ x(t) on F is
measurable with respect to each Borel measure on Fd.

For example, this assumption is satisfied if λ is Lebesgue measure on the interval [0, 1]
and F = C[0, 1] (in this case the indicated evaluation functions are Borel measurable).

The image of a measure µ ∈ P(Fd) under the mapping from Fd to Rk defined by
x 7→ (x(t1), . . . , x(tk)) is called a finite-dimensional distribution of the measure µ, i.e.,
its value on a Borel set B ⊂ Rk is given by

µ
(
x ∈ F : (x(t1), . . . , x(tk)) ∈ B

)
.

By our assumption of measurability of the evaluation functions, the image of the measure
µ under this map is well-defined.

Theorem 2.1. Suppose we are given a measure µ ∈ P(Fd) and a sequence of measures
µn ∈ P(Fd). Suppose that the finite-dimensional distributions of the measures µn con-
verge weakly to the respective finite-dimensional distributions of the measure µ. Then the
measures µn converge weakly to the measure µ on the space Fd.

Proof. By assumption, the space Fd is separable. Let us take a countable everywhere
dense set {yi}∞i=1 in it. By the lemma, we have to verify (1.1) for polynomials in the
variables

d(x, yi) =

∫
T

min(1, |x(t)− yi(t)|)λ(dt), where y1, . . . , yk ∈ L0(λ).

Weak convergence of finite-dimensional distributions of the given measures means that,
for all t1, . . . , tk ∈ T and all ϕ ∈ Cb(Rk), there holds the equality

lim
n→∞

∫
X

ϕ(x(t1), . . . , x(tk))µn(dx) =

∫
X

ϕ(x(t1), . . . , x(tk))µ(dx).

By the Lebesgue dominated convergence theorem, for any bounded Borel function ψ on
Rk × Rk that is continuous in the first k variables we obtain the equality

lim
n→∞

∫
X

∫
Tk

ψ(x(t1), . . . , x(tk), t1, . . . , tk)λ(dt1) · · ·λ(dtk)µn(dx)

=

∫
X

ψ(x(t1), . . . , x(tk), t1, . . . , tk)λ(dt1) · · ·λ(dtk)µ(dx).

In particular, this equality is true for all functions of the form

ϕ(s1, . . . , sk, t1, . . . , tk) =

k∏
i=1

min(1, |si − yi(ti)|)

and their linear combinations. Thus, this equality holds for all polynomials in the vari-
ables d(x, yi). �
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In terms of stochastic processes we obtain the following result. We shall deal with
measurable processes (ξt)t∈T on a probability space (Ω,A, P ); actually, we need a bit
weaker measurability condition: it suffices to assume that the function (t, ω) 7→ ξt(ω) is
λ ⊗ P -measurable. If the σ-field A is countably generated and the process (ξt)t∈T has
the property that the function

t 7→
∫
A

arctan ξt(ω)P (dω)

is λ-measurable for every A ∈ A, then (ξt)t∈T has a measurable version, i.e., there exists
a measurable process (ηt)t∈T such that, for each fixed t ∈ T , we have ηt = ξt almost
surely (see, e.g., [4, V. 2, p. 71] or [6, p. 54, Exercise 1.8.14]). Every measurable process
(ξt)t∈T generates a probability measure on L0(λ), called its distribution and denoted
by Pξ. In the case of a bounded process (or a process with paths in L2(λ)) the measure
Pξ can be defined on L2(λ) as the image of the measure P under the mapping

ω 7→
∞∑
n=1

∫
T

ξt(ω)en(t)λ(dt)en,

where {en} is an orthonormal basis in L2(λ).
In the general case the measure Pξ can be obtained as a limit in variation of the

distributions of bounded processes max(−k,min(k, ξt)); see also [4, v. 2, p. 171, Exercise
7.14.115]. If Fd is a full measure set with respect to Pξ, then the distribution of the
process can be regarded on F ; in this case we say that Pξ is concentrated on Fd. For
example, this is possible for processes with continuous paths.

Corollary 2.2. Let ξ and {ξn}∞n=1 be stochastic processes on T with trajectories in the
space Fd such that the finite-dimensional distributions of ξn converge to the respective
finite-dimensional distributions of ξ. Then the measures Pξn converge weakly to the
measure Pξ on the space Fd.

Remark 2.3. It is clear from the proof of the theorem that it suffices to have weak
convergence of finite-dimensional distributions generated by points ti in a set T0 ⊂ T of
full λ-measure.

It is worth noting that, for a uniformly bounded sequence of functions, its convergence
in measure λ is equivalent to convergence in L2(λ), and if the sequence is bounded in
Lp(λ), then its convergence in measure is equivalent to convergence in Lr(λ) for each
r < p. Therefore, although, as noted above, for the Lp-norm the analogue of the proven
theorem is false, we obtain the following assertion.

Corollary 2.4. Let ξ and {ξn}∞n=1 be stochastic processes on T with trajectories in Fd
such that the finite-dimensional distributions of ξn converge weakly to the respective finite-
dimensional distributions of ξ. Suppose that for some p ∈ (1,+∞) we have

sup
n

E‖ξn‖pLp(λ) <∞.

Then, for any r in the interval [1, p), the measures Pξn converge weakly to the measure
Pξ on the space Lr(λ).

Proof. By the Skorohod theorem (see [4, Chapter 8]) we have Borel mappings

ηn, η : [0, 1]→ L0(λ)

such that the distributions of ξn and ξ coincide with λ1 ◦ η−1n and λ1 ◦ η−1, respectively,
where λ1 is Lebesgue measure on [0, 1], and ηn(s) → η(s) a.e. in L0(λ). Hence the
functions |ηn(s)(t) − η(s)(t)| converge to zero in measure λ ⊗ λ1. Since the integral of
|ηn(s)(t)|p with respect to λ ⊗ λ1 equals E‖ξn‖pLp(λ), we obtain that the integrals of
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|ηn(s)(t)− η(s)(t)|r converge to zero whenever r < p, i.e., the processes ηn converge to η
in Lr(λ⊗ λ1), which yields weak convergence of their distributions in Lr(λ). �

We note that our condition of the uniform boundedness of moments is weaker than
convergence of moments assumed in [14], [15], [16], [17], and also in [1] and [2] (where,
however, much more general spaces are considered), but r < p.

For r = p this conclusion can be false, but if the processes ξn are uniformly bounded,
then it is true for any r ∈ [1,+∞).

Since by Prohorov’s theorem weak convergence of measures on the separable (by our
assumption) spaces L0(λ) and Lp implies the uniform tightness of these measures, in all
aforementioned cases the uniform tightness follows from weak convergence of the finite-
dimensional distributions. If the set F is measurable in L0(λ) with respect to each Borel
measure (for example, is a Suslin space, as is the case for C[0, 1]), then the measures µn
are uniformly tight not only in L0(λ), but also in Fd (see LeCam’s theorem in [19], [3]
or [4, Theorem 8.6.4]).

Note also that by the aforementioned Skorohod theorem any weakly convergent se-
quence of Borel probability measures on a complete separable metric space X can be ob-
tained as a sequence of distributions of almost everywhere convergent measurable maps
from [0, 1] with Lebesgue measure to X. Therefore, in Corollary 2.2 we obtain stochastic
processes ηn and η such that Pξn = Pηn , Pξ = Pη and ηn(·, ω)→ η(·, ω) in measure λ for
almost every ω. A similar assertion is true in the situation of Corollary 2.4, which has
been used in its proof.

In some cases, it is useful to consider measures on path spaces not on the Borel σ-
algebra, but on smaller σ-algebras. For example, it is known (see [8]) that the Wiener
measure on the space of continuous paths on [0,+∞) with a finite norm of the form
supt |x(t)/α(t)| cannot be defined on the whole Borel σ-algebra generated by this norm,
because the obtained space is not separable. In such cases, one can consider smaller σ-
algebras, for example, the σ-algebra B1(X) generated by all balls of our metric space. In
the lemma, we have considered precisely convergence of integrals of functions measurable
with respect to B1(X). There are other possible solutions: for example, for the Wiener
measure we can consider a separable path space with a norm of the form supt |x(t)/β(t)|
consisting of functions such that lim

t→∞
x(t)/β(t) = 0. Of course, not always such a norm is

suitable. An advantage of the metric of convergence in measure is its separability under
broad assumptions.

The obtained result can be useful for the study of processes with trajectories in the
Skorohod space D (see [3] and [21]); certainly, in this case the natural convergence in D
should be replaced by convergence in measure (as was done in [20] and [23]).

We recall that the space D consists of right-continuous functions on [0, 1] having
left limits. Convergence in D is determined by the metric d0 defined as follows: given
x, y ∈ D, d0(x, y) is the infimum of positive ε with the property that there is an increas-
ing homeomorphism h of [0, 1] such that supt |h(t)− t| ≤ ε and supt |x(t)− y(h(t))| ≤ ε.
This metric makes D a separable space that is not complete, but there is another metric
defining the same convergence and making D a complete separable space. Convergence
in D is stronger than convergence in measure on [0, 1]. For every measure P ∈ P(D),
there is a set TP ⊂ [0, 1] with an at most countable complement such that for each t ∈ TP
the function x 7→ x(t) is continuous P -almost everywhere on D (see [3, Section 15]). For
any t, this function is Borel measurable on D. Therefore, we obtain finite-dimensional
distributions of P . Borel probability measures Pn on D converge weakly to a mea-
sure P provided that they are uniformly tight and their finite-dimensional distributions
generated by points from TP converge weakly to the respective finite-dimensional distri-
butions of P . It follows from the results above that if we introduce on D the weaker
metric of convergence in measure, then weak convergence is ensured by convergence of
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finite-dimensional distributions generated by points in TP . Certainly, the implied uniform
tightness will also correspond to the metric d, not to the natural metric d0.

Remark 2.5. (i) The assumptions that F consists of individual functions and not
of equivalence classes and that d is a metric on a F (not merely a semimetric)
can be omitted if we modify the concept of finite-dimensional distributions. The
usual concept adopted above assumes that the evaluation functions t 7→ x(t)
are well-defined, which is the case when we deal with random processes. In
case of measures µn and µ on L0(λ) a natural analog of weak convergence of
finite-dimensional distributions is the relation

(2.1) lim
n→∞

∫ ∫
Tk

ψ(x(t1), . . . , x(tk), t1, . . . , tk)λ(dt1) · · ·λ(dtk)µn(dx)

=

∫ ∫
Tk

ψ(x(t1), . . . , x(tk), t1, . . . , tk)λ(dt1) · · ·λ(dtk)µ(dx)

for every bounded function ψ on Rk × T k such that the function

(s1, . . . , sk) 7→ ψ(s1, . . . , sk, t1, . . . , tk)

is continuous for all fixed ti and the function (t1, . . . , tk) 7→ ψ(s1, . . . , sk, t1, . . . , tk)
is λk-measurable for all fixed si. We shall call this property the integral conver-
gence of finite-dimensional distributions. With this modification the previous
theorem remains valid (with the same proof) also for measures on the space
L0(λ) of equivalence classes or its subsets.

(ii) It is worth noting that there is another concept of a finite-dimensional projection
of a measure on a topological vector space X as the image of this measure under
a finite-dimensional operator of the form x 7→ (l1(x), . . . , lk(x)), where l1, . . . , lk
are continuous linear functionals on X. However, in our specific situation the
space L0(λ) typically has no nonzero continuous linear functionals, as has been
noted above.

The hypothesis of the theorem is only a sufficient condition, but not necessary, which
is seen from the trivial case of deterministic processes ξn(t) that are continuous functions
on [0, 1] converging to zero in Lebesgue measure, but not pointwise. The correspond-
ing finite-dimensional distributions are Dirac measures at the points (ξn(t1), . . . , ξn(tk)),
hence do not converge weakly. By the Riesz theorem this sequence contains a subse-
quence that converges almost everywhere. It turns out that in this sense the above
theorem admits a partial converse.

Theorem 2.6. Suppose that we are given a sequence of measurable random processes ξn
and a measurable random process ξ on T such that there is the integral convergence of
finite-dimensional distributions of ξn to the corresponding finite-dimensional distributions
of ξ in the sense of (2.1). Then there is a subsequence in {ξn} and a set T0 ⊂ T of
full measure λ such that we shall have weak convergence of the usual finite-dimensional
distributions generated by the points in T0.

Proof. According to the previous remark, we have weak convergence of the measures
µn on L0(λ) generated by our processes to the distribution µ of the process ξ. As we
have mentioned above, by the Skorohod theorem, there are random elements ηn, η on
([0, 1], λ0), where λ0 is the usual Lebesgue measure, taking values in L0(λ) and such that
λ0 ◦ η−1n = µn, λ0 ◦ η−1 = µ and ηn → η λ-a.e. Let ηn(s, t) and η(s, t) be their jointly
measurable versions as functions on ([0, 1] × T, λ0 ⊗ λ). This follows from the fact that
the functions ηn converge to η in measure λ0 ⊗ λ, since∫

[0,1]×T
min(1, |ηn(s, t)− η(s, t)|)dsλ(dt) =

∫ 1

0

d(ηn(s), η(s))ds→ 0
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by Fubini’s theorem and the Lebesgue dominated convergence theorem (recall that d is
bounded). By the Riesz theorem, there is a subsequence {ηni

} converging λ0⊗ λ-almost
everywhere. Thus, there is a set T0 ⊂ T of full λ-measure such that for each t ∈ T0 we
have ηni(s, t) → η(s, t) for λ0-almost all s ∈ [0, 1]. Therefore, for all t1, . . . , tk ∈ T0 we
have

lim
i→∞

∫ 1

0

ψ(ηni(s, t1), . . . , ηni(s, tk))ds =

∫ 1

0

ψ(η(s, t1), . . . , η(s, tk))ds

for each bounded continuous function ψ on Rk, as required. �

3. Metric convergence implied by the pointwise convergence

Here we give a sufficient condition that guarantees that a metric or a semimetric on
the space of measurable functions on a measurable space (T,B) such that the pointwise
convergence implies convergence in this metric is equivalent to the metric generated by
convergence in measure for some probability measure on (T,B). The equivalence of two
metrics is understood as the coincidence of the collections of converging sequences in
these metrics. Obviously, already in the case of the closed interval [0, 1] with its Borel
σ-field there are incomparable metrics of convergence in measure for different Borel prob-
ability measures on [0, 1], but convergence in all such metrics follows from the pointwise
convergence. We also observe that two probability measures µ and ν generate equivalent
metrics of convergence in measure precisely when they are equivalent (have the same
classes of zero sets).

If we do not impose any restrictions, then a semimetric on the space of Borel functions
convergence in which follows from the pointwise convergence need not be associated with
convergence in measure. This is seen from the following example:

d(f, g) = |f(0)− g(0)− f(1) + g(1)|.
Convergence in this semimetric follows from the pointwise convergence, but cannot be
equivalent to convergence in measure for a probability Borel measure µ on [0, 1]. Indeed,
the sequence of constants n does not converge in measure µ, but d(n, 0) = 0. This
semimetric can be used to construct a true metric with the same property on the space
C[0, 1]. To this end, we take

d(f, g) = d0(f, g) + |f(0)− g(0)− f(1) + g(1)|,
where d0 is the usual metric of convergence in Lebesgue measure. Then there is no
Borel probability measure behind convergence in the metric d. Indeed, let µ be such
a measure. Then it is readily seen that its restriction to (0, 1) must be equivalent to
Lebesgue measure, but it must also have atoms at 0 and 1, because convergence in d is not
equivalent to convergence in Lebesgue measure (the sequence of functions fn(x) = nxn

converges to zero in Lebesgue measure, but d(fn, 0)→ 0). This leads to a contradiction,
since for the functions gn(x) = nxn + n(x − 1)2n we have d(gn, 0) → 0, but gn(0) =
gn(1) = n.

Theorem 3.1. Let (T,B) be a measurable space and let d be a semimetric on the space
F of B-measurable functions such that for all f, g ∈ F one has d(f, g) = d(f − g, 0)
and d(f, 0) ≤ d(g, 0) whenever |f(t)| ≤ |g(t)| for all t ∈ T , and, moreover, the pointwise
convergence on T implies convergence in this semimetric. Let us define a set function µ
on B by

µ(A) = sup
{∑

i

d(IAi
, 0) : Ai ∈ B are disjoint, A =

⋃
i

Ai

}
.

If µ(T ) < +∞, then µ is a measure on B and convergence of a sequence of B-measurable
functions on T in this measure is equivalent to convergence of this sequence in the met-
ric d.
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Proof. We prove that µ is a measure. Let A =
⋃∞
i=1Ai, where Ai ∈ B are disjoint. Let

us fix ε > 0. Then there are sets Bj ∈ B and Ci,j ∈ B such that Bj are disjoint and
A =

⋃∞
j=1Bj , Ci,j are mutually disjoint and Ai =

⋃∞
j=1 Ci,j ,

µ(A) <
∑
j

d(IBj
, 0) + ε, µ(Ai) <

∑
j

d(ICi,j
, 0) +

ε

2i
for all i.

Hence, on the account of the definition of µ and the equalities Bj =
⋃∞
i=1Bj ∩ Ai,

Ai =
⋃∞
j=1Ai ∩Bj , A =

⋃∞
i,j=1 Ci,j we have

µ(A)− ε <
∑
j

d(IBj
, 0) ≤

∑
j

∑
i

d(IBj
⋂
Ai
, 0) ≤

∑
i

µ(Ai)

<
∑
i

∑
j

d(ICi,j , 0) + ε ≤ µ(A) + ε.

Therefore, µ(A) =
∑∞
i=1 µ(Ai). Note that µ(A) ≥ d(IA, 0) and µ(A) = 0 if d(IA, 0) = 0,

since if µ(A) > 0, then there is Ai ⊂ A with Ai ∈ B and d(IAi
, 0) > 0, whence it follows

that d(IA, 0) ≥ d(IAi
, 0) > 0.

Next we prove that for every function f ∈ F vanishing µ-almost everywhere we have
d(f, 0) = 0. Replacing f by |f |, we can assume that f ≥ 0. Let A = {t : f(t) 6= 0}. For
every pair of nonnegative integer numbers (k, n) we consider the set

Ak,n =
{
t :

k

2n
≤ f(t) <

k + 1

2n

}
.

Note that Ak,n ⊂ A if k ≥ 1 and that d(IA, 0) = 0 by the supposed equality µ(A) =

0 and the bound µ(A) ≥ d(IA, 0), which yields that d
(
k
2n IAk,n

, 0
)

= 0 for all k, n.

Therefore, by the triangle inequality and the translation invariance of d, the functions
fn =

∑∞
k=1

k
2n IAk,n

satisfy the inequality

d(fn, 0) ≤
∞∑
k=1

d
( k

2n
IAk,n

, 0
)

= 0.

Since fn(t)→ f(t) pointwise, we have d(f, 0) = 0.
Now let {fn} converge to 0 in measure µ. Suppose that the numbers d(fn, 0) do not

converge to zero. Passing to a subsequence, we can assume that d(fn, 0) ≥ ε > 0 for all
n and that {fn} converges to zero µ-almost everywhere. Let

A =
{
t : {fn(t)} does not converge to zero

}
.

Note that A ∈ B. Redefining fn by zero on A we obtain functions gn pointwise converging
to zero such that d(fn, gn) = 0. Hence d(gn, 0)→ 0, which yields that d(fn, 0)→ 0, which
is a contradiction.

Conversely, suppose that d(fn, 0)→ 0. Replacing f by |f | we can assume that fn ≥ 0.
Fix N ∈ N and set An = {t : fn(t) ≥ 1/N}. We have to show that µ(An)→ 0. First we
observe that by the triangle inequality, the translation invariance and monotonicity of d
we have

d(IAn
, 0) ≤ Nd

( 1

N
IAn

, 0
)
≤ Nd(fn, 0).

It follows that d(IAn
, 0) → 0. Suppose now that {µ(An)} does not converge to zero.

Passing to a subsequence, we can assume that µ(An) ≥ ε and d(IAn , 0) ≤ 2−n. Set Bn =⋃
k≥nAk and B =

⋂
nBn. Then µ(Bn) ≥ µ(An) ≥ ε and d(IBn , 0) ≤ 21−n. It follows

that µ(B) ≥ ε, and since IBn
→ IB pointwise, we obtain d(IB , 0) = 0. The equality

d(IB , 0) = 0 implies that µ(B) = 0 (as noted above), which is a contradiction. �
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The condition in this theorem that µ is finite is not necessary. For example, the
semimetric

d2(f, g) =

(∫ 1

0

min(|f(t)− g(t)|2, 1) dt

)1/2

on the space of Borel functions on [0, 1] is equivalent to the semimetric of convergence
in Lebesgue measure, but µ([0, 1]) = +∞, since for every n we can divide [0, 1] into
intervals of length 1/n, and for such an interval Ai we have d(IAi

, 0) = 1/
√
n. Certainly,

the hypothesis of the theorem could be replaced with the weaker one that there is an
equivalent metric satisfying our assumption, which will be even a necessary condition as
well (but such a condition is not interesting). However, we do not know whether the
additional restrictions on d in this theorem enable one to replace d with an equivalent
metric for which µ would be finite.

We thank V.P. Demichev for useful discussions. Our work has been supported by the
RFBR grants 14-01-90406, 14-01-00237 and the SFB 701 at Bielefeld University.
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