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V. S. KOROLIUK AND N. LIMNIOS

POISSON APPROXIMATION OF PROCESSES WITH LOCALLY

INDEPENDENT INCREMENTS WITH MARKOV SWITCHING

In this paper, the weak convergence of additive functionals of processes with locally
independent increments and with Markov switching in the scheme of the Poisson
approximation is proved. For the relative compactness, a method proposed by R.
Liptser for semimartingales is used with a modification, where we apply a solution
of a singular perturbation problem instead of the ergodic theorem.

1. Introduction

Poisson approximation is still an active area of research in several theoretical and
applied directions. Several recent works on this topic can be found in the literature: we
can find the classical approach in [1]–[3] and the functional approach in [8, 9, 7, 12].

In particular in [8, 9], the stochastic additive functional

ξ(t) = ξ0 +

∫ t

0

η(ds; x(s)), t ≥ 0, (1)

of a jump Markov process with locally independent increments (PLII) ([8, p. 14])
η(t; ·), t ≥ 0, (also known as a piecewise deterministic Markov process – PDMP, [5, Chap-
ter 2]) perturbed by the jump Markov process x(t), t ≥ 0, has been studied. Process (1) is
studied in the (functional) Poisson approximation scheme within an ad hoc time-scaling,
as we can see below (2).

In the Poisson approximation scheme, the jump values of the stochastic system are
split into two parts: a small jump taking values with probabilities close to one and a big
jump taken values with probabilities tending to zero together with the series parameter
ε → 0. So, in the Poisson approximation principle, the probabilities (or intensities) of
jumps are normalized by the series parameter ε > 0. Hence, the time-scaled family of
processes ξε(t), t ≥ 0, ε > 0, has to be considered.

However, the method used here to prove the weak convergence is quite different from
the method proposed by other authors ([6]-[17]): the main point is to prove the conver-
gence of predictable characteristics of semimartingales which are integral functionals of
some switching Markov processes. But the main difficulty is that the predictable char-
acteristics of semimartingale themselves depend on the process we study. Thus, to prove
the convergence of the process, we should prove the convergence of predictable charac-
teristics that depend on the process. Ordinary methods cannot help in this situation
separately.

We propose to study functionals of PLII [8, p. 14] using a combination of two methods.
The method proposed by R. Liptser in [11], based on the theory of semimartingales, is
combined with a solution to a singular perturbation problem instead of the ergodic
theorem. So, the method includes two steps.
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At the first step, we prove the relative compactness of the semimartingale representa-
tion of the family ξε, ε > 0, by proving the following two facts as proposed in [11]:

lim
c→∞

sup
ε≤ε0

P{sup
t≤T

|ξε(t)| > c} = 0, ∀ε0 > 0

that is known as the compact containment condition (CCC), and

E|ξε(t) − ξε(s)|2 ≤ k|t − s|,
for some positive constant k.

At the second step, we prove the convergence of predictable characteristics of the semi-
martingales which are integral functionals of the form (a(u, x) is a real-valued function):

∫ t

0

a(ξε(s), xε(s))ds,

by using the singular perturbation technique as presented in [8].
Finally, we apply Theorem IX.3.27 from [7] in order to prove the weak convergence of

a semimartingale.
The paper is organized as follows. In Section 2, we present the time-scaled additive

functional (1), the PLII, and the switching Markov process. In the same section, we give
the main results of the Poisson approximation. In Section 3, we prove the theorem.

2. Main results

Let us consider the space Rd endowed with a norm | · | (d ≥ 1), and (E, E), a standard

phase space, (i.e., E is a Polish space and E its Borel σ-algebra). For a vector v ∈ Rd

and a matrix c ∈ Rd×d , v∗ and c∗ denote their transposes, respectively. Let C3(R
d) be

a measure-determining class of real-valued bounded functions g such that g(u)/|u|2 → 0,
as |u| → 0 (see [7, 8]).

The additive functional ξε(t), t ≥ 0, ε > 0 on Rd in the series scheme with small series
parameter ε → 0, (ε > 0) is defined by the stochastic additive functional [8, Section
3.3.1]

ξε(t) = ξε
0 +

∫ t

0

ηε(ds; x(s/ε)). (2)

The family of the Markov jump processes with locally independent increments ηε(t; x),
t ≥ 0, x ∈ E on Rd, is defined by the generators on the test-functions ϕ(u) ∈ C1(Rd) [8,
Section 3.3.1] (see also [9])

Γ̃ε(x)ϕ(u) = ε−1

∫

Rd

[ϕ(u + v) − ϕ(u)]Γε(u, dv; x), x ∈ E, (3)

or, equivalently,

Γ̃ε(x)ϕ(u) = bε(u; x)ϕ′(u) +
1

2
cε(u; x)ϕ′′(u) + ε−1

∫

Rd

[ϕ(u + v) − ϕ(u) − vϕ′(u)

−v2

2
ϕ′′(u)]Γε(u, dv; x),

where bε(u; x) = ε−1
∫

Rd vΓε(u, dv; x), cε(u; x) = ε−1
∫

Rd vv∗Γε(u, dv; x), and Γε(u, dv; x)
is the intensity kernel.

The switching Markov process x(t), t ≥ 0 on the standard phase space (E, E), is defined
by the generator

Qϕ(x) = q(x)

∫

E

P (x, dy)[ϕ(y) − ϕ(x)], (4)

where q(x), x ∈ E, is the jump function intensity for x(t), t ≥ 0, and P (x, dy) the
transition kernel of the embedded Markov chain xn, n ≥ 0 defined by xn = x(τn), n ≥ 0,
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where 0 = τ0 ≤ τ1 ≤ ... ≤ τn ≤ ... are the jump times of x(t), t ≥ 0. We suppose also
that the processes ηε(t; x) and x(t) are right continuous.

It is worth noting that the coupled process ξε(t), x(t/ε), t ≥ 0, is a Markov additive
process (see, e.g., [8, Section 2.5]).

The Poisson approximation of the Markov additive process (2) is considered under the
following conditions:

C1: The Markov process x(t), t ≥ 0 is uniformly ergodic with π(B), B ∈ E as a
stationary distribution.

C2: Poisson approximation. The family of processes with locally independent incre-
ments ηε(t; x), t ≥ 0, x ∈ E satisfies the Poisson approximation conditions [8, Section
7.2.3]:

PA1: Approximation of the mean values:

bε(u; x) =

∫

Rd

vΓε(u, dv; x) = ε[b(u; x) + θε
b(u; x)],

and

cε(u; x) =

∫

Rd

vv∗Γε(u, dv; x) = ε[c(u; x) + θε
c(u; x)].

PA2: Poisson approximation condition for the intensity kernel

Γε
g(u; x) =

∫

Rd

g(v)Γε(u, dv; x) = ε[Γg(u; x) + θε
g(u; x)]

for all g ∈ C3(R
d), and the kernel Γg(u; x) is bounded for each g ∈ C3(R

d), that is,

|Γg(u; x)| ≤ Γg (a constant depending on g).

The above negligible terms θε
a, θε

b , θ
ε
c satisfy the condition

sup
x∈E

|θε
· (u; x)| → 0, ε → 0.

In addition the following conditions are used:
C3: Uniform square-integrability:

lim
c→∞

sup
x∈E

∫

|v|>c

vv∗Γ(u, dv; x) = 0,

where the kernel Γ(u, dv; x) is defined on the class C3(R
d) by the relation

Γg(u; x) =

∫

Rd

g(v)Γ(u, dv; x), g ∈ C3(R
d).

C4: Linear growth: there exists a positive constant L such that

|b(u; x)| ≤ L(1 + |u|), and |c(u; x)| ≤ L(1 + |u|2),
and, for any real-valued non-negative function f(x), x ∈ E such that

∫

Rd\{0}

(1 + f(x))|x|2dx < ∞,

we have

|Λ(u, v; x)| ≤ Lf(v)(1 + |u|),
where Λ(u, v; x) is the Radon–Nikodym derivative of Γ(u, B; x) with respect to the
Lebesgue measure dv in Rd, that is,

Γ(u, dv; x) = Λ(u, v; x)dv.

The main result of our work is the following one.
Theorem 1 Under conditions C1-C4, the weak convergence

ξε(t) ⇒ ξ0(t), ε → 0
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takes place.
The limit process ξ0(t), t ≥ 0 is defined by the generator

Γϕ(u) = b̂(u)ϕ′(u) +

∫

Rd

[ϕ(u + v) − ϕ(u) − vϕ′(u)]Γ̂(u, dv), (5)

where the average deterministic drift is defined by

b̂(u) =

∫

E

π(dx)b(u; x),

and the average intensity kernel is defined by

Γ̂(u, dv) =

∫

E

π(dx)Γ(u, dv; x).

Remark 1. The limit process ξ0(t), t ≥ 0, is a PLII (see, e.g., [8, p. 14]), (or a PDMP
- see, e.g., [5, Chapter 2]). Generator (5) can be written also as follows:

Γϕ(u) = b̂0(u)ϕ′(u) +

∫

Rd

[ϕ(u + v) − ϕ(u)]Γ̂(u, dv),

where b̂0(u) = b̂(u) −
∫

Rd vΓ̂(u, dv).
In the following corollary of the above theorem, we give an important particular case

where the limit process is a compound Poisson process.
Corollary 1. Under the Poisson approximation conditions:
PA1’: Approximation of mean values:

bε(u; x) =

∫

Rd

vΓε(dv; x) = ε[b(x) + θε
b(u; x)]

and

cε(u; x) =

∫

Rd

vv∗Γε(dv; x) = ε[c(x) + θε
c(u; x)].

PA2′: Approximation condition for the intensity kernel:

Γε
g(u; x) =

∫

Rd

g(v)Γε(u, dv; x) = ε[Γg(x) + θε
g(u; x)],

and the kernel Γg(x) is bounded for each g ∈ C3(R
d), that is,

|Γg(x)| ≤ Γg (a constant depending on g).

The additional condition
PA3: ∫

Rd

vΓ(dv) =

∫

E

π(dx)b(x), Γ(dv) =

∫

E

π(dx)Γ(dv; x),

the limit process ξ0(t), t ≥ 0 is a compound Poisson process

ξ0(t) = u +

ν(t)∑

k=1

αk, t ≥ 0,

defined by the generator

Γ̃ϕ(u) =

∫

Rd

[ϕ(u + v) − ϕ(u)]Γ(dv),

where

Γ(dv) =

∫

E

π(dx)Γ(dv; x), Γg(x) =

∫

Rd

g(v)Γ(dv; x).

The sequence of random variables αk, k = 1, 2, ... is i.i.d. with joint distribution function
P(αk ∈ dv) = Γ(dv)/Λ, Λ = Γ(Rd) (it is obvious that Γ(Rd) =

∫
Rd Γ(dv)). The

time-homogeneous Poisson process ν(t), t ≥ 0, is defined by its intensity: Λ > 0.
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3. Proof of Theorem 1

The proof of Theorem 1 is based on the semimartingale representation of the addi-
tive functional process (2). According to Theorems 6.27 and 7.16 [4], the predictable
characteristics of semimartingale (2) have the following representations:

•Bε(t) = ε−1
∫ t

0 bε(ξ
ε(s); xε

s)ds =
∫ t

0 b(ξε(s); xε
s)ds + θε

b ,

•Cε(t) = ε−1
∫ t

0 cε(ξ
ε(s); xε

s)ds =
∫ t

0 c(ξε(s); xε
s)ds + θε

c ,

•Γε(t) = ε−1
∫ t

0

∫
Rd g(v)Γε(ξε(s), dv; xε

s)ds =
∫ t

0

∫
Rd g(v)Γ(ξε(s), dv; xε

s)ds + θε
g,

where xε
t := x(t/ε), t ≥ 0, and sup

x∈E

|θε
· | → 0, ε → 0.

The jump martingale part of semimartingale (2) is represented as follows:

µε(t) =

∫ t

0

∫

Rd

v[µε(ξε(s), ds, dv; xε
s) − Γε(ξε(s), dv; xε

s)ds].

Here, µε(u, ds, dv; x), x ∈ E is the family of counting measures with characteristics

Eµε(u, ds, dv; x) = Γε(u, dv; x)ds.

We can see now that the predictable characteristics depend on the process ξε(s). Thus,
to prove the convergence of ξε(s), we should prove the convergence of the predictable
characteristics dependent on ξε(s). To avoid this difficulty, we combine two methods.

We split the proof of Theorem 1 in the following two steps.
STEP 1. At this step, we establish the relative compactness of the family of processes

ξε(t), t ≥ 0, ε > 0, by using the approach developed in [11]. We recall that the space of
all probability measures defined on the standard space (E, E) is also a Polish space; so
the relative compactness and tightness are equivalent.

First, we need the following lemma.
Lemma 1. Under assumption C4, there exists a constant kT > 0 independent of ε,

dependent on T , and such that

E sup
t≤T

|ξε(t)|2 ≤ kT .

Proof: (following [11]). Semimartingale (2) has the representation

ξε(t) = u + Aε
t + M ε

t , (6)

where u = ξε(0); Aε
t is the predictable drift

Aε
t =

∫ t

0

b(ξε(s), xε
s)ds +

∫ t

0

∫

Rd\{0}

vΓ(ξε(s), dv; xε
s)ds + θε,

and M ε
t is the locally square integrable martingale

M ε
t =

∫ t

0

c(ξε(s); xε
s)dws +

∫ t

0

∫

Rd\{0}

v[µε(ds, dv; xε
s) − Γε(ξε(s), dv; xε

s)ds] + θε,

where wt, t ≥ 0 is the standard Wiener process.
For a process y(t), t ≥ 0, let us define the process

y†
t = sup

s≤t

|y(s)|.

Then relation (6) yields

((ξε
t )†)2 ≤ 3[u2 + ((Aε

t )
†)2 + ((M ε

t )†)2]. (7)

Condition C4 implies that

(Aε
t )

† ≤ L

∫ t

0

(1 + (ξε
s)†)ds +

∫ t

0

∫

Rd\{0}

|v|f(x)(1 + (ξε
s)†)ds
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≤ L(1 + r1)

∫ t

0

(1 + (ξε
s)†)ds, (8)

where r1 =
∫

Rd\{0} |x|2f(x)dx.

Now, by Doob’s inequality (see, e.g., [12, Theorem 1.9.2]),

E((M ε
t )†)2 ≤ 4|E〈M ε〉t|,

and condition C4, we obtain

|〈M ε〉t| =

∣∣∣∣∣

∫ t

0

c(ξε(s); xε
s)c

∗(ξε(s); xε
s)ds +

∫ t

0

∫

Rd\{0}

vv∗Γε(ξε(s), dv; xε
s)ds + θε

∣∣∣∣∣

≤ 2L(1 + r1)

∫ t

0

[1 + ((ξε
s)†)2]ds. (9)

Inequalities (7)-(9) and the Cauchy–Buniakowski–Schwartz inequality,
[∫ t

0

ϕ(s)ds

]2

≤ t

∫ t

0

ϕ2(s)ds,

imply

E((ξε
t )†)2 ≤ k1 + k2

∫ t

0

E((ξε
s)†)2ds,

where k1 and k2 are positive constants independent of ε.
By the Gronwall inequality (see, e.g., [6, p. 498]), we obtain

E((ξε
t )†)2 ≤ k1 exp(k2t).

Hence, the lemma is proved.
Corollary 2. Under assumption C4, the following CCC holds:

lim
c→∞

sup
ε≤ε0

P{sup
t≤T

|ξε(t)| > c} = 0, ∀ε0 > 0.

Proof: The proof of this corollary follows from Kolmogorov’s inequality.
Remark 2. Another way to prove CCC is proposed in [8, Theorem 8.10] and used by

other authors [6, 17]. They use the function ϕ(u) =
√

1 + u2 and prove the corollary for
ϕ(ξε

t ) by applying the martingale characterization of the Markov process.
This can be easily proved due to specific properties of ϕ(u).
Lemma 2. Under assumption C4, there exists a constant k > 0 independent of ε and

such that

E|ξε(t) − ξε(s)|2 ≤ k|t − s|.
Proof: In the same manner as in (7), we can write

|ξε(t) − ξε(s)|2 ≤ 2|Aε
t − Aε

s|2 + 2|M ε
t − M ε

s |2.
By using Doob’s inequality, we obtain

E|ξε(t) − ξε(s)|2 ≤ 2E{|Aε
t − Aε

s|2 + 8|〈M ε〉t − 〈M ε〉s|}.
Now (8), (9), and assumption C4 yield

|Aε
t − Aε

s|2 + 8|〈M ε〉t − 〈M ε〉s| ≤ k3[1 + ((ξε
T )†)2]|t − s|,

where k3 is a positive constant independent of ε.
From the last inequality and Lemma 1, the desired conclusion emerges.
Thus, Corollary 2 and Lemma 2 yield immediately the compactness of the family of

processes ξε(t), t ≥ 0, ε > 0.
STEP 2. The next step of the proof concerns the convergence of the predictable char-

acteristics. To do that, we apply the results of Sections 3.2-3.3 in [8] and the following
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theorem. Let C2
0 (Rd × E) be the space of functions which are real-valued, twice contin-

uously differentiable by the first argument, defined on Rd ×E, and vanishing at infinity,
and let C(Rd × E) be the space of real-valued continuous bounded functions defined on
Rd × E.

Theorem 2 ([8, Theorem 6.3]). Let the following conditions hold for a family of coupled
Markov processes ξε(t), xε(t), t ≥ 0, ε > 0:

CD1: There exists a family of test functions ϕε(u, x) in C2
0 (Rd × E), such that

lim
ε→0

ϕε(u, x) = ϕ(u),

uniformly by u, x.
CD2: The following convergence holds for the generator Lε of a coupled Markov

process ξε(t), xε(t), t ≥ 0, ε > 0:

lim
ε→0

Lεϕε(u, x) = Lϕ(u),

uniformly by u, x. The family of functions Lεϕε, ε > 0 is uniformly bounded, and both
Lϕ(u) and Lεϕε belong to C(Rd × E).

CD3: The quadratic characteristics of the martingales that characterize a coupled
Markov process ξε(t), xε(t), t ≥ 0, ε > 0 have the representation

〈µε〉t =

∫ t

0

ζε(s)ds,

where the random functions ζε, ε > 0, satisfy the condition

sup
0≤s≤T

E|ζε(s)| ≤ c < +∞.

CD4: The convergence of the initial values holds, and

sup
ε>0

E|ζε(0)| ≤ C < +∞.

Then the weak convergence

ξε(t) ⇒ ξ(t), ε → 0,

takes place.
We consider the three-component Markov process Bε(t), ξε(t), xε

t , t ≥ 0 which can be
characterized by the martingale

µε
t = ϕ(Bε(t), ξε(t), xε

t ) −
∫ t

0

Lεϕ(Bε(s), ξε(s), xε
t )ds,

where its generator Lε has the representation [8]

Lε = ε−1Q + Γ̃ε + Bε, (10)

with Γ̃ε given by (3), Q given by (4), and

Bε(u; x)ϕ(v) = bε(u; x)ϕ′(v).

According to [8, Theorem 7.3], under conditions C1-C3 the limit generator for Γ̃ε, ε →
0, has the form (5). However in order to prove the convergence of predictable character-
istics, it is sufficient to study the action of the generator Lε on the test functions of two
variables ϕ(v, x).

Thus, it has the representation

Lεϕ(v, x) = [ε−1Q + B]ϕ(v, x). (11)
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The solution of the singular perturbation problem at the test functions ϕε(v, x) = ϕ(v)+

εϕ1(v, x) in the form Lεϕε = L̂ϕ+θεϕ can be found in the same manner with Proposition
5.1 in [8]. That is,

L̂ = B̂, (12)

where B̂ϕ(v) = b̂ϕ′(v).
Similar results can be proved for two other predictable characteristics.
Now Theorem 2 may be applied.
We see from (10) and (12) that the solution of the singular perturbation problem for

Lεϕε(u, v; x) satisfies conditions CD1, CD2. Condition CD3 of this theorem implies
that the quadratic characteristics of the martingale corresponding to a coupled Markov
process is relatively compact. The same result follows from the CCC (see Corollary 2
and Lemma 2) by [7]. Thus, condition CD3 follows from Corollary 2 and Lemma 2. As
soon as Bε(0) = B0(0), ξε(0) = ξ0(0), we see that condition CD4 is also satisfied. Thus,
all the conditions of Theorem 2 are satisfied, so the weak convergence Bε(t) ⇒ B0(t)
takes place.

By the same reasoning, we can show the convergence of the processes Cε(t) and Γε(t).
The final step of the proof is achieved now by using Theorem IX.3.27 in [7]. Indeed,

all the conditions of this theorem are fulfilled.
As we have mentioned above, the square integrability condition 3.24 follows from

CCC (see [7]). The strong dominating hypothesis is true with the majoration functions
presented in condition C4. Condition C4 yields the condition of big jumps for the last
predictable measure of Theorem IX.3.27 in [7]. Conditions iv) and v) of Theorem IX.3.27
[7] are obviously fulfilled.

The weak convergence of the predictable characteristics is proved by solving the sin-
gularly perturbation problem for generator (11).

The last condition (3.29) of Theorem IX.3.27 is also fulfilled due to CCC proved in
Corollary 2 and Lemma 2. Thus, the weak convergence is true.

We can see now that the limit Markov process is characterized by the predictable
characteristics

B0(t) =

∫ t

0

b(ξ0(s))ds, C0(t) =

∫ t

0

c(ξ0(s))ds, Γ0
g(t) =

∫ t

0

Γg(ξ
0(s))ds.

So, the limit Markov process ξ0(t) can be expressed by generator (5).
Theorem 1 is proved.
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