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D. FERGER

ARGINF-SETS OF MULTIVARIATE CADLAG PROCESSES AND

THEIR CONVERGENCE IN HYPERSPACE TOPOLOGIES

Let Xn, n ∈ N, be a sequence of stochastic processes with trajectories in the mul-

tivariate Skorokhod-space D(Rd). If A(Xn) denotes the set of all infimizing points

of Xn, then A(Xn) is shown to be a random closed set, i.e. a random variable
in the hyperspace F , which consists of all closed subsets of Rd. We prove that if

Xn converges to X in D(Rd) in probability, almost surely or in distribution, then

A(Xn) converges in the analogous manner to A(X) in F endowed with appropriate
hyperspace topologies. Our results immediately yield continuous mapping theorems

for measurable selections ξn ∈ A(Xn). Here we do not require that A(X) is a sin-

gleton as it is usually assumed in the literature. In particular it turns out that ξn
converges in distribution to a Choquet capacity, namely the capacity functional of

A(X). In fact, this motivates us to extend the classical concept of weak convergence.

In statistical applications it facilitates the construction of confidence regions based
on M -estimators even in the case that the involved limit process has no longer an

a.s. unique infimizer as it was necessary so far.

1. Introduction

For some fixed natural number d let X = {X(t) : t ∈ Rd} be a real-valued stochastic
process defined on some probability space (Ω,A,P) with trajectories in the multivariate
Skorokhod-space D = D(Rd) which is defined as follows. If R = (R1, . . . , Rd) ∈ {<,≥}d
is a ordered list of the usual relations < and ≥ in R and t = (t1, . . . , td) ∈ Rd is a point
in the euclidean space, then

QR := QR(t) := {s ∈ Rd : siRiti, 1 ≤ i ≤ d}

is the R-quadrant of t. Given a function f : Rd → R the quantity

f(t+R) := lim
s→t,s∈QR(t)

f(s)

is called the R-quadrant-limit of f in t. Then D(Rd) consists of all functions f such that
for each t ∈ Rd

(a) f(t+R) exists for all R ∈ {<,≥}d ,
(b) f(t+R) = f(t) for R = (≥, . . . ,≥).

Relations (a) and (b) extend the notions ,,limits from below” and ,,continuous from
above” from the univariate case (d=1) to the multivariate one. Therefore it is convenient
to call f ∈ D a cadlag function (continue à droite limite à gauche). D(Rd) endowed with
the Skorokhod-metric s is a complete separable metric space, confer [12], p.332. The
pertaining Borel-σ-algebra D is generated by the sets of all cylinders, confer Theorem 2
of [12], whence X can be considered as a random element X : (Ω,A)→ (D,D).
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The main object in this paper is the random set Arginf(X) of all infimizers of X,
where

(1) Arginf(f) ≡ A(f) := {t ∈ Rd : min
R∈{<,≥}d

f(t+R) = inf
s∈Rd

f(s)}, f ∈ D.

We will see that A(f) is a closed subset of Rd (possibly empty). Let F = F(Rd) denote
the family of all closed subsets of Rd (including the empty set ∅) and let F be equipped
with some appropriate topology τ and the pertaining Borel-σ-algebra Bτ . It turns out
that A(X) is a random element in the space (F ,Bτ ). We focus on the following problem:

If (Xn) is a sequence of random elements in (D,D) converging to some limit X in
distribution, in probability or almost surely, respectively, then under which conditions
does this entail the corresponding convergence of the arginf-sets?

In other words we want to formulate versions of the Continous Mapping Theorem for
the Arginf-functional, which by (1) is a well-defined mapping A : D → F .

Let D′ be the collection of all f ∈ D with A(f) 6= ∅. Then by the axiom of choice
there exists a function a : D′ → Rd such that a(f) ∈ A(f) for every f ∈ D′. This means
via a we can chose a single infimizing point of every f and denote it alternatively by
arginf(f) ≡ a(f). Once again the question arises which types of continuous mapping
theorems are valid for the functional a : D′ → Rd.

Example 1.1. Our motivation for considering these problems stems from statistics.

Here, the well-known principle of M-estimation yields estimators θ̂n defined as infimizing

point of some random criterion function Mn(t), t ∈ Rd, that is θ̂n := a(Mn) estimates a
(unique) parameter θ = a(M) where M is some theoretical criterion function. In non-
parametric statistics the involved criterion functions typically are cadlag and its tempting
to conclude as follows: If, for instance, Mn → M a.s. then hopefully a(Mn) → a(M)
and A(Mn) → A(M) a.s. Clearly, we wish the convergence Mn → M to be as weak
as possible and in case of set-convergence the topology on the hyperspace F to be as
large as possible. It turns out that epi-convergence seems to be the minimal setup to
make the above conclusions to become true as long as a certain compactness condition
is fulfilled. In applications to establish epi-convergence of the stochastic processes Mn

is hard to prove or even intractable. In contrast, the Skorokhod-convergence is much
easier to handle, because there is a nice equivalent characterization. A crucial result of
our paper is that convergence in the Skorokhod-metric implies epi-convergence, whence

we eventually obtain sufficient and manageable criterions for proving consistency of (θ̂n).

Moreover we want to derive convergence in distribution, namely Γn(θ̂n−θ)
L→ ξ in Rd for

some positive diagonal d × d-matrices Γn and with limit variable ξ we wish to identify.
The basic idea here is to introduce rescaled Mn-processes defined as

Xn(t) = γn{Mn(θ + Γ−1n t)−Mn(θ)}, t ∈ Rd,
or alternatively as

Xn(t) = γn
Mn(θ + Γ−1n t)

Mn(θ)
, t ∈ Rd,

with some normalizing sequence (γn) of positive real numbers. As a consequence of the

transformation in time t 7→ θ + Γ−1n t one obtains that Γn(θ̂n − θ) = a(Xn) and that

Γn(A(Mn)− θ) = A(Xn). Thus if Xn
L→ X in (D, s) entailed distributional convergence

of a(Xn) and A(Xn) we had a powerful tool to find the limit distributions of M -estimators
of Euclidean parameters.

The paper is organized as follows: In section 2 the functional A : D → F and the
choice function a : D′ → Rd are investigated as to various continuity properties. For that
purpose it is necessary to introduce two topologies on F , namely the Fell-topology τFell
and the missing-topology τmiss, and to use some of their properties. In this context F is
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called hyperspace and these underlying topologies (but also others) are known as hyper-
space topologies, where the Fell-topology is strictly stronger than the missing-topology.
It turns out that convergence of fn to f in (D, s) ensures that of A(fn) to A(f) in the
hyperspace (F , τmiss). As a useful consequence measurability of A is guaranteed. If in
addition

(2) A(fn) ∩K 6= ∅ for eventually all n ∈ N,

where K ⊆ Rd is some compact set, and if A(f) is a singleton then actually A(fn)→ A(f)
in (F , τFell). Once we have continuity of A as described above we obtain several conti-
nuity properties for the choice function a. Under the assumption (2) for each selection
a(fn) ∈ K it follows that d(a(fn), A(f)) → 0, where d(x,B) is the usual distance of
a point x ∈ Rd to a subset B of Rd. Thus, if a(f) is the unique infimizer of f , then
a(fn) → a(f). All of this requires several analytical notions and new results on the
Skorokhod-space (D, s) and in particular its relation to the space SC(Rd) of lower semi-
continuous (lsc) functions endowed with the metrik e of epi-convergence. Namely, if f̄
denotes the lower-semicontinuous regularization of f it is shown that the map f 7→ f̄ is a
continuous injection from (D(Rd), s) into (SC(Rd), e). The analytical results in section
2 are in turn fundamental for the main part of the paper, section 3. Here, we derive a
collection of probabilistic limit theorems for A(Xn) and a(Xn). The first part deals with
almost sure convergence and in probability. It smoothly follows that if Xn → X a.s. then
A(Xn) → A(X) in (F , τmiss) a.s. and if in addition the above conditions analogously
hold a.s. for Xn and X then A(Xn) → A(X) in (F , τFell) , d(a(Xn), A(X)) → 0 and
a(Xn)→ a(X) a.s., respectively. In the second part of section 3 we focus on what conclu-
sions can be drawn under the assumption that Xn converges in distribution in (D, s) to

some limit process X. Firstly, it follows that A(Xn)
L→ A(X) in (F , τmiss). Furthermore

assume that (A(Xn)) is stochastically bounded. Roughly speaking this means that with
arbitrarily high probability eventually all A(Xn) lie in some compact set K ⊆ Rd. Then
we obtain quasi-convergence in distribution and give a precise characterization. Natu-
rally the question arises whether there is a hyperspace topology which is related to this
new type of convergence and which of course simultaneously is strictly finer than the
missing topology. It turns out that the upper Vietoris∗ topology denoted by τ∗uV meets

this requirement, and thus we have that A(Xn)
L→ A(X) in (F , τ∗uV ). Moreover, if A(X)

is a singleton a.s. then actually A(Xn)
L→ A(X) in (F , τFell) which is the strongest

conclusion. In statistics one is interested in measurable selections ξn, which play the
role of estimators for some parameter of interest there. These are random variables with

ξn ∈ A(Xn) a.s. Here Xn
L→ X in (D, s) entails

lim sup
n→∞

P(ξn ∈ K) ≤ T (K) := P(A(X) ∩K 6= ∅) for all compact K ⊆ Rd.

Under the additional assumption that (ξn) is stochastically bounded (in the classical
sense) the above relation can be sharpened to

(3) lim sup
n→∞

P(ξn ∈ F ) ≤ T (F ) for all closed F ⊆ Rd.

Notice that this relation formally is in complete accordance with the equivalent char-
acterization of convergence in distribution stated in the Portmanteau-Theorem. In fact
the set-function T can be extended onto the Borel-σ algebra B(Rd) on Rd such that
T (B) = P(A(X) ∩ B 6= ∅) for all Borel-sets B ∈ B(Rd). Now, the key difference is that
T : B(Rd)→ [0, 1] in general is not a probability measure on B(Rd). On the other hand
T is a so-called Choquet-capacity, which in a suitable manner generalizes the notion of a
probability. It is well-known by a Theorem of Choquet that T uniquely determines the
distribution of the random closed set A(X). For that reason we can say that the points
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ξn converge in distribution to the set A(X). Finally, T is in fact a probability distribution
if and only if A(X) = {ξ} is a singleton a.s. Thus (3) and the Portmanteau-Theorem

yield that in case of uniqueness ξn
L→ ξ in Rd.

2. Arginf-sets and infimizing points of cadlag functions

The basic idea is to involve the concept of epi-convergence, which has proven to be the
suitable tool for the analysis of deterministic minimization problems. For that purpose
let R̄ := [−∞,∞] be the extended real line. Recall that a function f : Rd → R̄ is lower
semicontinuous at x if lim infn→∞ f(xn) ≥ f(x) for any sequence (xn) whose limit is x
and f is lower-semicontinuous (lsc in short), if it is lower semicontinuous at every x ∈ Rd.
Set

SC(Rd) := {f : Rd → R̄; f lsc}.
For each f : Rd → R̄ the lsc regularization f̄ of f is defined by f̄(x) := sup{h(x) : h ≤

f, h lsc}. According to Proposition 1.8 in [6] f̄ is lsc with f̄ ≤ f and it is the greatest
of all lsc functions g such that g ≤ f . By 1(7) and Lemma 1.7 of [21] it admits the
alternative representation

(4) f̄(x) = min{α ∈ R̄ : ∃xn → x with f(xn)→ α}.
The following lemma yields the lsc regularization for f ∈ D.

Lemma 2.1. If f is cadlag, then

(5) f̄(x) = min{f(x+R) : R ∈ {<,≥}d}.
In particular,

(6) f̄(x) = f(x) for all x ∈ Cf ,

where Cf := {x ∈ Rd : f is continuous at x} is the set of all continuity points of f .

Proof. We denote the right-hand side of (5) by f̃(x). By (4) there exists a sequence
xn → x with f(xn) → f̄(x). Since {QR(x) : R ∈ {<,≥}d} is a partition of Rd there
exists some R ∈ {<,≥}d and a subsequence (xnk

)k of (xn)n with (xnk
)k ⊆ QR(x). Thus,

f(xnk
)→ f̄(x) as k →∞, but by definition of the R- quadrant limit f(xnk

)→ f(x+R)

as k → ∞ as well, whence f̄(x) = f(x + R) ≥ f̃(x). To see the reverse inequality note
that by definition of the R-quadrant limit it follows that {f(x + R) : R ∈ {<,≥}d} ⊆
{α ∈ R̄ : ∃xn → x with f(xn) → α}, whence f(x + R) ≥ f̄(x) for all R ∈ {<,≥}d and

consequently f̃(x) ≥ f̄(x).
The second part (6) of the lemma follows from (5) upon noticing that if x is a continuity

point of f then f(x+R) = f(x) for all R ∈ {<,≥}d. �

For f : Rd → R̄ let

Argmin(f) := {x ∈ Rd : f(x) = inf
y∈Rd

f(y)}

be the set of all minimizing points of f . If f is lsc then Argmin(f) is closed. Indeed, this
well-known fact is easy to see: Let (xn) ⊆ Argmin(f) with xn → x. Then infy∈Rd f(y) =
lim infn→∞ f(xn) ≥ f(x), whence x ∈ Argmin(f).

Our next result says that x is an infimizing point of a cadlag function f if and only
if x is a minimizing point of its pertaining lsc regularization f̄ . Moreover, we give some
useful properties which hold under rescaling.

Lemma 2.2. (1) If f is cadlag, then

(7) A(f) = Argmin(f̄).

In particular, A(f) is closed.
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(2) Let Λ be the group of all transformations λ : Rd → Rd of the form λ(t1, . . . , td) =
(λ1(t1), . . . , λd(td)), where each λi : R → R, 1 ≤ i ≤ d, is continuous, strictly increasing
with λi(−∞) = −∞ and λi(∞) = ∞. Note that λ−1 = (λ−11 , . . . , λ−1d ) is the inverse of
λ. Consider the following transform of f ∈ D:

g(t) = a{f(λ−1(t)) + b}, t ∈ Rd,

where a > 0 and b ∈ R. Then:
(i) g ∈ D.
(ii) ḡ(t) = a{f̄(λ−1(t)) + b}.
(iii) x ∈ A(f) ⇔ λ(x) ∈ A(g).
(iv) A(g) = λ(A(f)).

Proof. (1) If x ∈ A(f), then there exists some R ∈ {<,≥}d such that f(x + R) =
infy∈Rd f(y) ≤ f(x + R′) for all R′ ∈ {<,≥}d. Thus by Lemma 2.1, f̄(x) = f(x +

R) = infy∈Rd f(y) ≤ infy∈Rd f̄(y) ≤ f̄(x), where the first inequality follows from the

definition of f̄ , because the constant mapping h(y) = infy∈Rd f(y) is lsc. It follows that

f̄(x) = infy∈Rd f̄(y), i.e. x ∈ Argmin(f̄).

To see the reverse inclusion let x ∈ Argmin(f̄). By Lemma 2.1 there exists some
R ∈ {<,≥}d such that f(x + R) = f̄(x) = infy∈Rd f̄(y) ≤ infy∈Rd f(y) ≤ f(x + R),

where the first inequality holds since f̄ ≤ f . Thus f(x + R) = infy∈Rd f(y) resulting in
x ∈ A(f).

(2) Part (i) follows, because tn → t in QR(t) implies λ−1(tn)→ λ−1(t) in QR(λ−1(t))
for every R ∈ {<,≥}d. Here, we need the special form of λ and its inverse λ−1. Conse-
quently, g(t+R) = a{f(λ−1(t) +R) + b}, which in turn yields (ii) by (5) of Lemma 2.1.
As to the validity of (iii) note that λ is a bijection. Then with the help of (ii) one easily
verifies that f̄(x) ≤ f̄(t) ∀ t ∈ Rd if and only if ḡ(λ(x)) ≤ ḡ(u) ∀ u ∈ Rd. This confirms
(iii) by part (1) and (i). Finally, (iv) follows from (iii). �

Let Df be the set of discontinuity points of f ∈ D. In the univariate case Df is a most
countable, confer [4], p.122, and therefore Cf is dense in R. However, for multivariate
f the set Df in general is uncountable. In fact, consider the simple indicator function
f = 1I1×...×Id , where Ij , 1 ≤ j ≤ d is a left-closed, right-open interval in R. Here, Df is
equal to the boundary of I1× . . .×Id, which for d ≥ 2 is non-denumerable. Nevertheless,
it turns out that Cf is dense in Rd for higher dimensions d as well. Actually, we have
much more.

Lemma 2.3. Cf lies dense in Rd for each f ∈ D. In fact, for every sequence (fj)j∈N ⊆
D the intersection

⋂
j∈N Cfj is dense in Rd.

Proof. We first prove the assertion for a single function f ∈ D. Let us assume that
Cf is not dense in Rd. Then there exist x ∈ Rd and η > 0 such that the open ball
Bη(x) := {y ∈ Rd : |y − x| < η} ⊆ Df . Here, | · | is the maximum-norm on Rd. We
choose some a > 0 large enough such that x ∈ [−a, a]d and Bη(x) ⊆ [−a, a]d. According
to Lemma 1.5 of [16] for every ε > 0 there exist a δ = δ(ε) > 0 and a (finite) partition
R = R(ε) of [−a, a]d into rectangles such that for points x, x′ ∈ I, I ∈ R, with |x−x′| < δ
the inequality |f(x)− f(x′)| < ε holds. If

Hf (y) := max{|f(y +R)− f(y +R′)| : R,R′ ∈ {<,≥}d}
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denotes the magnitude of jump at point y, then clearly f is continuous at y if and only
if Hf (y) = 0. Consequently,

(8) Bη(x) ⊆ Df ∩ [−a, a]d ⊆
⋃
k∈N
{y ∈ [−a, a]d : Hf (y) > 1/k}.

For fixed k ∈ N we have that

(9) {y ∈ [−a, a]d : Hf (y) > 1/k} ⊆
⋃

I∈R(1/k)

∂I =: Γk ,

where ∂I denotes the boundary of (any set) I. To see the inclusion, let y ∈ [−a, a]d with
Hf (y) > 1/k. Since R(1/k) is a partition of [−a, a]d there exists a rectangle I ∈ R(1/k)
containing y. Then y cannot be located in the interior of I. In fact, in that case for all
R,R′ ∈ {<,≥}d it follows that

(10) |f(y +R)− f(y +R′)| = lim
n→∞

|f(sn)− f(un)|,

with sequences (sn) ⊆ QR(y) and (un) ⊆ QR′(y) both converging to y. Since the joint
limit y is an interior point of I by assumption we know that sn and un are in I for
eventually all n ∈ N and in addition |sn − un| < δ(1/k). Thus the above Lemma 1.5 of
[16] yields that |f(sn) − f(un)| < 1/k for eventually all n ∈ N. Therefore by (10) we
obtain that |f(y+R)− f(y+R′)| ≤ 1/k for all R,R′ ∈ {<,≥}d and consequently Hf (y)
as maximal value is less than or equal to 1/k as well, in contradiction to Hf (y) > 1/k.
For that reason y must lie on the boundary of I, which shows the validity of the inclusion
(9).

In view of (8) we can infer that Bη(x) ⊆
⋃
k∈N Γk, where Γk is a finite union of

hyperplanes with dimension d − 1. As it is well-known such hyperplanes are null-sets
under the d-dimensional Lebesgue-measure λd. It follows that each Γk is a null-set as
well and so λd(Bη(x)) ≤

∑
k∈N λd(Γk) = 0 in contradiction to λd(Bη(x)) = (2η)d > 0.

Thus our lemma is proved in the special case of a single function f .
In the general case let us again assume that

⋂
j∈N Cfj is not dense in Rd. Then there

exist x ∈ [−a, a]d for some a > 0 large enough and η > 0 such that the open ball
Bη(x) ⊆

⋃
j∈N(Dfj ∩ [−a, a]d). If for each fixed j ∈ N, we apply (8) and (9) to f = fj

we obtain that Bη(x) ⊆
⋃
j∈N

⋃
k∈N Γjk, where each Γjk is a finite union of hyperplanes

with dimension d− 1. Therefore, by σ-additivity of the Lebesgue-measure we obtain the
contradiction that λd(Bη(x)) ≤ 0. �

Our next result relates Skorokhod-convergence, i.e. convergence in (D(Rd), s) with the
so-called epi-convergence, which is defined as follows. A sequence (fn) of functions from
Rd into R̄ epi-converges to some f : Rd → R̄, if at each x ∈ Rd the following holds:

(a) For all sequences (xn) converging to x it is
lim infn→∞ fn(xn) ≥ f(x) .

(b) There exists at least one sequence (xn) converging to x such that
lim supn→∞ fn(xn) ≤ f(x) .

We write fn
epi→ f for short. According to Theorem 2.78 and Corollary 2.79 of [1] there

exists a metric e on the space SC(Rd) such that

fn
epi→ f ⇔ e(fn, f)→ 0, n→∞ (fn

e→ f)

Moreover (SC(Rd), e) is compact and separable.
So far we did not give the definition of the Skorokhod-metric s. Indeed, for our pur-

poses it suffices to work with the following equivalent characterization of the Skorokhod-
convergence as given in Theorem 1 of [12]. Here, recall the definition of the transformation
group Λ introduced in Lemma 2.2 (2).
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(Characterization of Skorokhod-convergence) If f and fn, n ∈ N, are functions in D

then s(fn, f)→ 0 (fn
s→ f) if and only if there exists a sequence (λn) ⊆ Λ such that

(a) supt∈Rd |λn(t)− t| → 0, n→∞.
(b) supt∈[−a,a]d |fn(λn(t))− f(t)| → 0, n→∞ ∀ a > 0.

The following result is the key for many proofs in our paper.

Proposition 2.1. The mapping Φ : (D(Rd), s) → (SC(Rd), e) given by Φ(f) = f̄ is

continuous, i.e., for each f ∈ D(Rd) and every sequence fn
s→ f it follows that f̄n

epi→ f̄ .
Moreover, Φ is an injection.

Proof. Let f ∈ D and (fn) be a sequence with fn
s→ f . Assume that f̄n

epi

6−→ f̄ . This
means that there exists some x ∈ Rd such that

lim inf
n→∞

f̄n(xn) < f̄(x) for some sequence (xn) with xn → x,(11)

or

lim sup
n→∞

f̄n(xn) > f̄(x) for all sequences (xn) with xn → x.(12)

In the first case we can deduce from (11) that there exist an α > 0 and a subsequence
(xnk

) of (xn) such that

(13) f̄nk
(xnk

) < f̄(x)− 3α ∀ k ∈ N.

Clearly, x ∈ [−a, a]d for some a > 0. Since fn
s→ f we find a sequence (λn) ∈ Λ with

(14) sup
t∈Rd

|λn(t)− t| → 0, n→∞,

and

(15) sup
t∈[−a,a]d

|fn(λn(t))− f(t)| → 0, n→∞.

According to Lemma 2.1 for each fixed n ∈ N there is a Rn ∈ {<,≥}d such that

f̄n(xn) = fn(xn +Rn) = lim
y→xn,y∈QRn (xn)

fn(y).

Thus for our α > 0 there exists a positive δ0 = δ0(α, xn) =: δ0,n such that for all
δ ∈ (0, δ0,n] we have that

(16) |f̄n(xn)− fn(y)| ≤ α ∀ y ∈ QRn
(xn) with |y − xn| ≤ δ.

Since Cfn lies dense in Rd by Lemma 2.3 we find some yn ∈ QRn
(xn) ∩ Cfn such that

(17) |yn − xn| ≤ min{n−1, δ0,n} ≤ δ0,n,

whence by (6) and (16)

|f̄n(xn)− f̄n(yn)| = |f̄n(xn)− fn(yn)| ≤ α.

In particular, we have constructed a sequence (yn) with yn ∈ Cfn , n ∈ N, satisfying

(18) |yn − xn| → 0, n→∞,

and

(19) f̄n(yn) ≤ f̄n(xn) + α ∀ n ∈ N.

Along the subsequence (nk) occurring in (13) we define

(20) znk
:= λ−1nk

(ynk
), k ∈ N.
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Since for each fixed k ∈ N,

fnk
(λnk

(znk
)) = fnk

(ynk
) by (20)

= f̄nk
(ynk

) by (6)
≤ f̄nk

(xnk
) + α by (19)

< f̄(x)− 3α+ α by (13)
= min{f(x+R) : R ∈ {<,≥}d} − 2α by (5),

we arrive at

(21) fnk
(λnk

(znk
)) ≤ f(x+R)− 2α ∀ R ∈ {<,≥}d} ∀ k ∈ N.

Moreover, observe that |x − znk
| ≤ |x − xnk

| + |xnk
− ynk

| + |ynk
− znk

|, where the
first two summands converge to zero as k → ∞ in view of (11) and (18). From the
definition (20) it follows that the third summand is equal to |λnk

(znk
) − znk

|, which
converges to zero by (14). This yields that znk

→ x, k →∞. In particular there exists a
quadrant QR(x) for some R ∈ {<,≥}d, which contains a subsequence of (znk

). Therefore
w.l.o.g. we have that znk

→ x, k → ∞ with znk
∈ QR(x) ∀ k ∈ N. This ensures that

f(znk
) → f(x + R), k → ∞, which in turn guarantees the existence of some natural

number k0 = k0(α) such that

f(x+R) ≤ f(znk
) + α ∀ k ≥ k0,

and so with (21) we can conclude that

(22) fnk
(λnk

(znk
)) ≤ f(x+R)− 2α ≤ f(znk

)− α ∀ k ≥ k0.

As a convergent sequence (znk
)k≥k0 is bounded and by enlarging a > 0 if necessary

we may assume that (znk
)k≥k0 ⊆ [−a, a]d. Thus with (22) one obtains that

sup
t∈[−a,a]d

|fnk
(λnk

(t))− f(t)| ≥ |fnk
(λnk

(znk
))− f(znk

)|

≥ f(znk
)− fnk

(λnk
(znk

)) ≥ α ∀ k ≥ k0,

which is in contradiction to (15).
In the second case we can deduce from (12) that for every sequence (xn) with xn → x

there exist a subsequence (xnk
) of (xn) and some α > 0 such that

(23) f̄nk
(xnk

) > f̄(x) + 3α ∀ k ∈ N.

By (5) of Lemma 2.1 there is some R ∈ {<,≥}d with f̄(x) = f(x + R). Let us
introduce

εn := sup
t∈Rd

|λn(t)− t| = sup
t∈Rd

|λ−1n (t)− t|.

For our given R = (R1, . . . , Rd) and x = (x1, . . . , xd) we define xn = (xn1, . . . , xnd)
for each n ∈ N by

xnj :=

{
xj + εn + 2/n , Rj = ≥
xj − εn − 2/n , Rj = <

Using the same arguments as in the derivation of (17) and (19) we find yn ∈ Cfn and
positive δ0,n such that

(24) |yn − xn| ≤ min{1/n, δ0,n} ≤ 1/n ∀ n ∈ N,

and

(25) f̄n(yn) ≥ f̄n(xn)− α ∀ n ∈ N.

Given yn = (yn1, . . . , ynd) and λn = (λn1, . . . , λnd) we put

(26) zn = (zn1, . . . , znd) := λ−1n (yn) = (λ−1n1 (yn1), . . . , λ−1nd (ynd)).
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Observe that |zn − yn| = |λ−1n (yn)− yn| ≤ εn and recall that | · | is the max-norm on
Rd. Therefore we know that

(27) −εn ≤ znj − ynj ≤ εn ∀ 1 ≤ j ≤ d,

and by (24) that

(28) −1/n ≤ ynj − xnj ≤ 1/n ∀ 1 ≤ j ≤ d.

Conclude from (27) and (28) that for all 1 ≤ j ≤ d,

xj + 1/n ≤ znj ≤ xj + 3/n+ 2εn, if Rj = ≥

and

xj − 3/n− 2εn ≤ znj ≤ xj − 1/n, if Rj = < ,

whence znj Rj xj ∀ 1 ≤ j ≤ d and so zn ∈ QR(x). Moreover, since εn → 0 by (14),
it follows that zn → x. In particular, znk

→ x, k → ∞ with znk
⊆ QR(x) ∀ k ∈ N and

so f(znk
)→ f(x+ R) = f̄(x), k →∞. Consequently, there exists some natural number

k0 = k0(α) such that

(29) f̄(x) ≥ f(znk
)− α ∀ k ≥ k0.

As above we find some a > 0 such that x ∈ [−a, a]d and (znk
)k≥k0 ⊆ [−a, a]d. Com-

bining our results we obtain:

supt∈[−a,a]d |fnk
(λnk

(t))− f(t)| ≥ fnk
(λnk

(znk
)− f(znk

)

= fnk
(ynk

)− f(znk
) by (26)

= f̄nk
(ynk

)− f(znk
) by (6)

≥ f̄nk
(xnk

)− α− f(znk
) by (25)

> f̄(x) + 2α− f(znk
) by (23)

≥ α ∀ k ≥ k0 by (29),

which is in contradiction to (15). This finishes our proof of continuity.
To see that Φ is injective, let f̄ = ḡ. It follows from (6) of Lemma 2.1 that f(x) = g(x)

for all x ∈ Cf ∩ Cg =: ∆, where by Lemma 2.3 the set ∆ is dense in Rd. Thus for an
arbitrary point x ∈ Rd and R = (≥, . . . ,≥) there exists a sequence (xn) ⊆ QR(x)∩∆ with
limit x, whence by ”continuity from above” f(x) = limn→∞ f(xn) = limn→∞ g(xn) =
g(x). �

In the univariate case (d = 1) continuity of Φ has been shown by [28] in the proof
of her Lemma 8.6 (ii). Here, Vogel uses an equivalent variant of the Skorokhod-metric,
which goes back to [20] and which is specifically designed for dimension one.

By Lemma 2.2 the assignment f 7→ A(f), f ∈ D is a map A: D → F from the
Skorokhod-space into the family of all closed subsets in Rd. We seek for strong (fine)
topologies on F that guarantee continuity of A at as many functions f as possible.

Let K = K(Rd) denote the family of all compact subsets in Rd. The first topology on
F we consider is the so-called missing-topology τmiss also known as upper Fell-topology.
By definition it is generated from a subbase which consists of all missing-sets M(K) :=
{F ∈ F : F ∩K = ∅},K ∈ K. [29] gives a characterization for convergence of a sequence
(Fn) in the topology τmiss via the Kuratowski-outer limit

K − lim sup
n→∞

Fn := {x ∈ Rd : ∃(nj) ⊂ N ∃ xnj
∈ Fnj

with xnj
→ x, j →∞}.

Lemma 2.4. (Vogel) Let F and Fn, n ∈ N, be closed subsets in Rd. Then

(30) Fn → F in τmiss ⇔ K − lim sup
n→∞

Fn ⊆ F.
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If F is equipped with the missing-topology then the functional A proves to be contin-
uous on its entire domain. As a consequence of this continuity we also obtain a certain
stability for infimizing-points xn of fn with s-limit f . Stability is specified in terms of

d(x,M) := inf{|x− y| : y ∈M}, x ∈ Rd, M ⊆ Rd,

which defines the distance of the point x to the set M . In the following propositions we
make these statements precise.

Proposition 2.2. Assume that fn
s→ f in D. Then:

(a) A(fn)→ A(f) in τmiss.
(b) K − lim supn→∞A(fn) ⊆ A(f).

Proof. By Lemma 2.4 the relations (a) and (b) are equivalent. From Proposition 2.1 we

know that f̄n
epi→ f̄ . By Lemma 2.2 it suffices to show that

(31) K − lim sup
n→∞

Argmin(f̄n) ⊆ Argmin(f̄).

The inclusion (31) follows immediately from Proposition 7.18 of [6] upon noticing
that the concept of Γ-convergence as considered there coincides with epi-convergence.
However, we prefer to give an elementary proof.

First notice that it is trivially fulfilled, if the left-hand side is empty. So, let x ∈
K − lim supn→∞Argmin(f̄n). By definition there exist a subsequence (nj) of the nat-
ural numbers and xnj

∈ Argmin(f̄nj
), j ∈ N, such that xnj

→ x as j → ∞. Assume

that x 6∈ Argmin(f̄). Then there exists some y ∈ Rd with f̄(y) < f̄(x). By (a) and
(b) in the definition of epi-convergence there exists a sequence (yn) with yn → y and
limn→∞ f̄n(yn) = f̄(y). Thus we can conclude as follows:

f̄(x) > f̄(y) = lim
n→∞

f̄n(yn) = lim inf
j→∞

f̄nj
(ynj

) ≥ lim inf
j→∞

f̄nj
(xnj

) ≥ f̄(x).

Here, the second to last inequality holds, because xnj
is a minimizing point of f̄nj

for all

j ∈ N. Observe that in particular f̄nj

epi→ f̄ as j → ∞ and so the last inequality follows
from the first part (a) in the definition of epi-convergence. Summing up we arrive at a
contradiction, whence x has to lie in Argmin(f̄) as desired. �

If one picks out infimizing points of fn in a compact set K, then the distances of these
points to the set containing all infimizers of f in K converge to zero. More precisely, we
have

Proposition 2.3. Assume that fn
s→ f in D with A(f) 6= ∅. If there exist some compact

K ⊆ Rd and N ∈ N with A(fn) ∩ K 6= ∅ for all n ≥ N , then for each selection xn ∈
A(fn) ∩K,n ≥ N , it follows that

d(xn, A(f))→ 0, n→∞.
If actually A(f) ∩K 6= ∅ then d(xn, A(f) ∩K)→ 0.

Proof. To prove the first convergence, let us assume that d(xn, A(f)) 6→ 0, n → ∞.
Then there exists some ε > 0 and a subsequence (xnj ) of (xn) such that

(32) d(xnj , A(f)) ≥ ε ∀ j ∈ N.

Since (xnj ) is in the compact setK by assumption it contains a convergent subsequence
with limit in K. For the sake of notational simplicity we may assume that xnj

→
x ∈ K, j → ∞. Furthermore, by definition of the K-outer limit it follows that x ∈
K− lim supn→∞A(fn) ⊆ A(f) by part (b) of Proposition 2.2, whence x ∈ A(f)∩K. On
the other hand, the map x 7→ d(x,M) is continuous for each fixed set M 6= ∅. Thus by
taking the limit j → ∞ in (32) one obtains that d(x,A(f)) ≥ ε > 0. Since d(x,M) = 0
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if and only if x lies in the closure of M and A(f) is closed by Lemma 2.2 we arrive at
the contradiction x 6∈ A(f).

The derivation of the second convergence follows the same lines upon noticing that
A(f) ∩K is closed as well. �

Intuitively it is clear that one cannot expect a convergence of (xn) to some x as long
as the limit f has more than one infimizing point x. On the other hand if in fact x is
unique, i.e. A(f) = {x}, then the convergence holds indeed. Actually, we have a bit
more than that. It is merely needed that x is a unique infimizing point of f relative to
K, i.e. A(f) ∩K = {x}, so that the existence of further infimizers outside of K is not
forbidden.

Proposition 2.4. (convergence of relative infimizers) Assume that fn
s→ f in D with

A(f) = {x}. If there exist some compact K ⊆ Rd and some N ∈ N with A(fn) ∩K 6= ∅
for all n ≥ N , then for each selection xn ∈ A(fn) ∩K,n ≥ N , it follows that

xn → x, n→∞.
Under the weaker assumption A(f) ∩K = {x} the convergence still holds.

Proof. The assertion follows immediately from Proposition 2.3 upon noticing that d(xn,
A(f)) = |xn − x| and d(xn, A(f) ∩K) = |xn − x| if A(f) = {x} and A(f) ∩K = {x},
respectively. �

In view of applications we like to give a reformulation.

Corollary 2.1. Let fn
s→ f in D with f possessing a unique infimizing point x. If there

exists N ∈ N with A(fn) 6= ∅ for all n ≥ N , then for each selection xn ∈ A(fn), n ≥ N ,
such that (xn)n≥N is bounded, we obtain that

xn → x.

If x is only unique relative to Kε := {t ∈ Rd : |t| ≤ lim supN≤n→∞ |xn| + ε} for an
arbitrary small ε > 0 then xn → x still holds.

Proof. By assumption s := sN := supn≥N |xn| is finite, whence K := [−s, s]d is compact
with A(fn) ∩ K 6= ∅ for all n ≥ N . Thus the first assertion follows from Proposition
2.4. As to the second assertion note that a := lim supN≤n→∞ |xn| = infM≥N sM . Con-
sequently there exists a natural number M = M(ε) ≥ N such that sM ≤ a+ ε, which in
turn ensures that A(fn) ∩Kε 6= ∅ for all n ≥M . Since A(f) ∩Kε = {x} by assumption
we can apply Proposition 2.4 with M and Kε in place of N and K, respectively. �

Since every convergent sequence is bounded, one might expect that the boundedness
assumption could be dropped. The following example shows that this is not true.

Example 2.1. For every n ∈ N let fn : Rd → R be defined by

fn(x) :=

 |x| , |x| ≤ n
2n− |x| , n < |x| ≤ 2n ,
|x| − 2n , |x| > 2n

where |·| is any norm on Rd. Then the fn are actually continuous and converge uniformly

on compacta to f with f(x) = |x|, whence fn
s→ f in D. Moreover, A(f) = {0} and

A(fn) = {0} ∪ {x ∈ Rd : |x| = 2n}, so that each choice 0 6= xn ∈ A(fn) yields xn → ∞
and convergence to x = 0 fails.

The example shows that even uniform convergence on compacta is not sufficient to
get rid of boundedness. The problem lies in whenever an (arbitrary) set T ⊆ Rd is fixed
uniform convergence on that T does not include any kind of control on the fn outside of
T for eventually all n ∈ N. As a way out we let T = Tn vary with n such that the Tn
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exhaust the entire Euclidean space Rd as n tends to infinity. Moreover, the limit function
f must have a well-separated infimizing point x as specified in (34) below. This means it
is excluded that there is some neighborhood U of x such that f comes arbitraray close
to the infimum value at points outside of U .

Proposition 2.5. For each n ∈ N let Tn ⊆ Rd be an open subset and xn an infimiz-
ing point of the restriction of fn on Tn, i.e., xn ∈ Tn and minR∈{<,≥}d fn(xn + R) =
inft∈Tn

fn(t). Assume that

(33) sup
t∈Tn

|fn(t)− f(t)| → 0, n→∞,

and that f has an infimizing point x, which additionally is well-separated in the following
sense:

(34) inf
t∈Rd

f(t) < inf{f(t) : |t− x| > ε} ∀ ε > 0.

Then, if

(35) lim inf
n→∞

Tn = Rd,

it follows that
xn → x, n→∞.

Proof. Let ε > 0 and m(ε) := inf{f(t) : |t − x| > ε}. Then by (34) the quantity
b(ε) := ((m(ε) − inft∈Rd f(t))/3 is positive. Thus by (33) we find some n0 = n0(ε) ∈ N
such that

(36) sup
t∈Tn

|fn(t)− f(t)| ≤ b(ε) ∀ n ≥ n0.

Since x and xn are infimizing points there exist R(x) and R(xn) in {<,≥}d with
f(x + R(x)) = inft∈Rd f(t) and f(xn + R(xn)) = inft∈Tn

fn(t). From (35) we can infer
that x ∈ Tn for all n ≥ n1 ∈ N.

Next observe that for some sequence (sm) ⊆ QR(x)(x) with limit x ∈ Tn it follows
that |fn(x+R(x))− f(x+R(x))| = limm→∞ |fn(sm)− f(sm)| ≤ supt∈Tn

|fn(t)− f(t)|.
Thus (36) guarantees

(37) fn(x+R(x)) ≤ f(x+R(x)) + b(ε) ∀ n ≥ n2 := max{n0, n1}.
Furthermore, let y ∈ Gn := Tn ∩ {t ∈ Rd : |t − x| > ε}. Then another application of

(36) and the definition of m(ε) yield that

(38) fn(y) ≥ f(y)− b(ε) ≥ m(ε)− b(ε) ∀ n ≥ n2.
Combining (37) and (38) we arrive at

(39) fn(y)− fn(x+R(x)) ≥ m(ε)− b(ε)− b(ε)− f(x+R(x)) = b(ε) ∀ n ≥ n2.
where the last equality holds, because m(ε)− f(x+R(x)) = m(ε)− inft∈Rd f(t) = 3b(ε)
by definition of b(ε). Since Gn is an open set, we can take the quadrant-limits in (39)
and obtain fn(y+R) ≥ fn(x+R(x)) + b(ε) > fn(x+R(x)) for all R ∈ {<,≥}d. To sum
up the following relation holds:

(40) fn(y +R) > fn(x+R(x)) ∀ y ∈ Gn ∀ R ∈ {<,≥}d ∀ n ≥ n2.
Finally, consider an n ≥ n2 and assume that |xn − x| > ε. Then xn ∈ Gn and from

(40) we can deduce the following contradiction:

inf
t∈Tn

fn(t) = fn(xn +R(xn)) > fn(x+R(x)) ≥ inf
t∈Tn

fn(t),

where the last inequality holds, because fn(x+R(x)) = limm→∞ fn(tm) for some sequence
(tm) ⊆ QR(x)(x) with limit x. Since x is an interior point of Gn it is tm ∈ Gn ⊆ Tn for
eventually all m ∈ N.
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To sum up we have shown that for every ε > 0 it is |xn − x| ≤ ε ∀ n ≥ n2 ∈ N, which
finishes our proof. �

Remark 2.1. If x is a well-seperated infimizing point of f , then A(f) = {x}. Indeed,
assume that there is another infimizing point y. Then ε := |y − x| is positive. Since in
particular |y − x| > ε/3 we obtain with (1) and (34) that

inf
t∈Rd

f(t) = min
R∈{<,≥}d

f(y +R) ≥ inf{f(t) : |t− x| > ε/3} > inf
t∈Rd

f(t).

Under the assumptions of Proposition 2.4 we also obtain convergence of the arginf-
sets with respect to a topology on F which is strictly finer (stronger) than the missing-
topology. This so-called Fell-topology τFell is generated from a subbase {M(K) : K ∈
K}∪{H(G) : G ∈ G}, where H(G) := {F ∈ F : F ∩G 6= ∅} is a hitting-set and G = G(Rd)
denotes the family of all open subsets in Rd. It is well-known that (F , τFell) is compact,
second countable and Haussdorff, confer Theorem A2.5 in [11]. In particular, the Fell-
topology is induced by the Kuratowski-metric δ and it corresponds to the Painlevé-
Kuratowski convergence. These concepts are defined as follows. For a given sequence
(Fn) of closed sets the Kuratowski-inner limit is the set

K − lim inf
n→∞

Fn := {x ∈ Rd : ∃ n0 ∈ N ∀ n ≥ n0 ∃ xn ∈ Fn with xn → x}.

Obviously,

(41) K − lim inf
n→∞

Fn ⊆ K − lim sup
n→∞

Fn,

but if in fact K − lim infn→∞ Fn = K − lim supn→∞ Fn =: F then F is called the
Painlevé-Kuratowski limit of (Fn) denoted by K − limn→∞ Fn. For the introduction of
the Kuratowski-metric δ let {xi : i ∈ N} be any countable dense subset in Rd. Then

δ(F,H) :=

∞∑
i=1

2−i
(

min{d(xi, F ), 1} −min{d(xi, H), 1}
)
, F,H ∈ F .

It is known that, confer, e.g., [19] or [21]:

(42) Fn → F in τFell ⇔ K − lim
n→∞

Fn = F ⇔ δ(Fn, F )→ 0.

Proposition 2.6. Assume that fn
s→ f in D with A(f) = {x}. If in addition there

exists a compact K ⊆ Rd such that

(43) A(fn) ∩K 6= ∅ for eventually all n ∈ N,
then the following hold:

(a) A(fn)→ {x} in τFell.
(b) K − limn→∞A(fn) = {x}.

Proof. First recall that by (42) the statements (a) and (b) are equivalent, whence it
remains to prove (b). For that purpose observe that by assumption there exist a natural
number N and points ξn ∈ A(fn) ∩ K for all n ≥ N . Let (ξnk

)k≥1 be an arbitrary
subsequence of (ξn)n≥N . Since (ξnk

) runs through the compact set K it contains a
convergent subsequence (ξnk(m)

)m≥1 with ξnk(m)
→ ξ ∈ K, m → ∞. As ξnk(m)

∈
A(fnk(m)

) for all m ∈ N we can infer that ξ ∈ K − lim supn→∞A(fn) ⊆ A(f) = {x},
where the inclusion follows from Proposition 2.2 (b). Consequently, ξ = x and the
sequence (ξn)n≥N has exactly one cluster point resulting in ξn → x, n → ∞, which in
turn by definition of the inner limit guarantees that x ∈ K−lim infn→∞A(fn). Therefore,
by (41) we obtain that

{x} ⊆ K − lim inf
n→∞

A(fn) ⊆ K − lim sup
n→∞

A(fn) ⊆ A(f) = {x},

which gives the desired result. �
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Let Bmiss and BFell denote the Borel-σ-algebra generated by the missing- or Fell-
topology, respectively. Since τFell ⊇ τmiss we have that BFell ⊇ Bmiss. As it happens
both σ-algebras actually coincide:

(44) BFell = Bmiss.

To see the remaining reverse inclusion note that [22] prove that

(45) BFell = σ({M(K) : K ∈ K}),

whence in fact BFell ⊆ Bmiss, because {M(K) : K ∈ K} ⊆ τmiss. As a simple but very
useful consequence we obtain

Proposition 2.7. The map A: (D,D)→ (F ,BFell) is measurable.

Proof. By Proposition 2.2 and Theorem 4.10 in [7] the map A: (D, s) → (F , τmiss) is
continuous and hence D−Bmiss measurable, which in view of (44) immediately gives the
result. �

Recall D′ := {f ∈ D : A(f) 6= ∅}. The axiom of choice guarantees the existence
of a mapping a : D′ → Rd such that a(f) ∈ A(f) for all f ∈ D′, which is commonly
known as choice function. If D′ denotes the trace of D on D′, then the question is
whether one can find a choice function, which is actually measurable. Notice that D′ =
A−1(H(Rd)) ∈ D by Proposition 2.7, becauseH(Rd) ∈ τFell is a Borel-set. For this reason
D′ = {O ∈ D : O ⊆ D′}. A measurable choice function a : (D′,D′)→ (Rd,B(Rd)), where
B(Rd) denotes the Borel-σ algebra on Rd is called mesaurable selection.

Proposition 2.8. (existence of measurable selection) There exists a D′ − B(Rd) mea-
surable function a : D′ → Rd with a(f) ∈ A(f) for all f ∈ D′.

Proof. By Proposition 2.7 A is a closed-valued measurable mapping and the assertion
follows immediately from Corollary 14.6 of [21]. �

3. Continuous Mapping Theorems for arginf-sets and measurable
selections

Let X = {X(t) : t ∈ Rd} be a stochastic process defined on a complete probability
space (Ω,A,P) with cadlag trajectories. For k ∈ N points t1, . . . , tk in Rd consider the
natural projections πt1,...,tk from D to Rk defined by πt1,...,tk(f) := (f(t1), . . . , f(tk)).
Theorem 2 of [12] says that D = σ(πt1,...,tk : t1, . . . , tk ∈ Rd, k ∈ N). Since πt1,...,tk =
(πt1 , . . . , πtk) is measurable if and only if each component πtj is measurable we also have
that

(46) D = σ(πt : t ∈ Rd).

By (46) each such process can be identified with a measurable map X : (Ω,A) →
(D,D). Therefore Proposition 2.7 ensures that A(X) = A ◦X is a random closed set in
the sense that A(X) : (Ω,A)→ (F ,BFell) is measurable. Similarly, if A(X) is nonempty
on Ω it follows by Proposition 2.8 that a(X) : (Ω,A) → (Rd,B(Rd)) is measurable as
well. More generally, if Ω′ := {A(X) 6= ∅} = {X ∈ D′} 6= ∅, then Ω′ ∈ A since
D′ ∈ D as shown above. Consequently, the trace A′ := A ∩ Ω′ of A in Ω′ is given by
A′ = {A ∈ A : A ⊆ Ω′}. Clearly, the restriction X : (Ω′,A′) → (D′,D′) is measurable,
whence by Proposition 2.8

(47) a(X) : (Ω′,A′)→ (Rd,B(Rd))

is a well-defined measurable map.
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3.1. Convergence in probability and almost surely. We start with Continuous
Mapping Theorems concerning almost sure (a.s.) convergence of the involved random
elements. If there is an analogon for convergence in probability, then it is formulated si-
multaneously in parantheses. In each case these counterparts follow form the subsequence
criterion, confer Lemma 3.2 in [11], which is valid for random variables in separable met-
ric spaces. As a consequence results about the missing-topology are excluded, since this
topology is not metrizable, confer [9].

Theorem 3.1. Let X and Xn, n ∈ N, be cadlag stochastic processes with

(48) Xn
s→ X a.s. (in probability), n→∞.

Then

(49) A(Xn)→ A(X) in τMiss a.s., n→∞.

Let us further assume that there exists a measurable map ξ : (Ω,A) → (Rd,B(Rd)),
which is a.s. the unique infimizing point of X, i.e.

(50) A(X) = {ξ} a.s.

and that with probability one:

(51) There exists a compact K with A(Xn) ∩K 6= ∅ for eventually all n ∈ N.

Then

(52) A(Xn)→ A(X) = {ξ} in τFell a.s. (in probability).

In particular, the events in (48) - (52) are in fact measurable subsets of (Ω,A).

Proof. Conclude from Proposition 2.2 that

Ω0 := {Xn
s→ X} ⊆ {A(Xn)→ A(X) in τMiss}

and that the first set Ω0 ∈ A because s(Xn, X) is a real random variable by Proposition
8.1.4 of [10] upon noticing that (D, s) is separable. Since without loss of generality we
do assume that (Ω,A,P) is complete it follows that the superset is measurable as well
and hence (49) follows immediately.
For the proof of the second part (52) let (Ck)k∈N be a sequence of compact sets such
that Ck ↑ Rd, for instance Ck = [−k, k]d. Observe that

Ω1 := {ω ∈ Ω : (51) holds} =
⋃
k∈N

⋃
N∈N

⋂
n≥N

{A(Xn) ∩ Ck 6= ∅} ∈ A,

because A(Xn) are random closed sets and therefore

{A(Xn) ∩ Ck 6= ∅} = (A(Xn))−1((M(Ck))c) ∈ A.

Notice that measurability of ξ entails {{ξ} ∈ M(K)} = {ξ /∈ K} ∈ A for each compact
K, whence {ξ} is a random closed set by (45). Thus another application of Proposition
8.1.4 of [10] ensures that δ(A(X), {ξ}) is a real random variable, for (F , δ) is separable,
because (F , τFell) is second countable. Consequently, Ω2 := {A(X) = {ξ}} ∈ A and so
we have that Ω0 ∩ Ω1 ∩ Ω2 ∈ A with P(Ω0 ∩ Ω1 ∩ Ω2) = 1 by (48), (50) and (51). Now
Proposition 2.6 guarantees that

Ω0 ∩ Ω1 ∩ Ω2 ⊆ {A(Xn)→ {ξ} in τFell} = {δ(A(Xn), {ξ})→ 0} ∈ A

resulting in (52). �

Our next results straightforwardly follow from Propositions 2.3–2.5. and constitute
their stochastic counterparts.
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Theorem 3.2. Assume that Xn
s→ X a.s. with A(X) 6= ∅ a.s. If ξn are random variables

with

(53) ξn ∈ A(Xn) a.s. ∀ n ≥ N ∈ N
and such that (ξn)n≥N is bounded a.s., then

d(ξn, A(X))→ 0 a.s.

In case of a.s. uniqueness (50) it follows that

ξn → ξ a.s.

Proof. Let Ω0 := {Xn
s→ X},Ω1 := {A(X) 6= ∅},Ω2 :=

⋂
n≥N{ξn ∈ A(Xn)} and Ω3 :=

{(ξn)n≥N is bounded}. We easily infer from the assumptions that P(Ω0 ∩ . . . ∩ Ω3) = 1.
On the other hand Ω0 ∩ . . . ∩ Ω3 ⊆ {d(ξn, A(X)) → 0} by Proposition 2.3, whence the
first assertion follows immediately. The derivation of the second assertion works in the
same fashion by using Corollary 2.1. �

As to the existence of the random variables ξn recall that Ω′n := {A(Xn) 6= ∅} ∈ A.
If P(Ω′n) = 1, then we are free to define ξn := a(Xn) on Ω′n and, e.g., ξn := 0 on Ω \Ω′n.
Conclude from (47) that ξn is a random variable on (Ω,A) with ξn ∈ A(Xn) on Ω′n, and
thus with probability one as desired. Random variables ξn with ξn ∈ A(Xn) a.s. are also
known as (measurable) selections of A(Xn). In statistical applications Xn plays the role
of a random criterion function, which typically has certain path properties allowing to
find an explicit solution of the pertaining minimization problem. In general this solution
is easily seen to be measurable.

Notice that by Example 2.1 the a.s. boundedness requirement on the selections ξn ∈
A(Xn) is inevitable. On the other hand this is hard to prove even in a special framework.
The following proposition offers a way out.

Theorem 3.3. Let (Tn) ⊆ Rd be a sequence of open sets (possibly random) such that
lim infn→∞ Tn = Rd a.s. and assume that

sup
t∈Tn

|Xn(t)−X(t)| → 0 a.s. (in probability),

where the limit process X possesses a.s. a well-separeted infimizing point ξ. If ξn ∈ Tn
is an infimizing point of the restriction of Xn on Tn a.s. for each n ≥ N ∈ N, i.e.,

(54) min
R∈{<,≥}d

Xn(ξn +R) = inf
t∈Tn

Xn(t) a.s. ∀ n ≥ N

then:
ξn → ξ a.s. (in probability).

Proof. Use Proposition 2.5 upon noticing that (Ω,A,P) is complete. �

Remark 3.1. All of our results so far remain valid if Rd is replaced by an open subset
O ⊆ Rd. Notice that K(O) = {K ∈ K(Rd) : K ⊂ O}. In particular, boundedness of a
sequence (xn)n∈N in O means that there exists a compact K ⊂ O such that xn ∈ K for
all n ∈ N. Thus, for instance, xn = 1/n is not bounded in the open interval O = (0, 1).

3.2. Convergence in distribution. In this section we present several Continuous Map-
ping Theorems for the functionals A = Arginf and a = arginf under the assumption that
the Xn converge in distribution as random variables in the multivariate Skorokhod-space
(D, s). We come up with semi-convergence (or: inner-approximation) in distribution
in the sense of [29] and in particular with the new concept of quasi-distributional con-
vergence for random closed sets. As a consequence there will also be an extension of
the classical notion of weak convergence of probability measures, where now the limit is
allowed to be a Choquet-capacity.
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Theorem 3.4. Assume that Xn
L→ X in (D, s). Let ϕn, n ∈ N, be random closed sets

with ϕn ⊆ A(Xn) a.s. for every n ∈ N. Then

(55) ϕn
L→ A(X) in (F , τmiss),

which is equivalent to semi-convergence in distribution, i.e.
(56)

lim sup
n→∞

P(

r⋂
j=1

{ϕn ∩Kj 6= ∅}) ≤ P(

r⋂
j=1

{A(X) ∩Kj 6= ∅}) ∀ r ∈ N ∀ K1, . . . ,Kr ∈ K.

If in addition (ϕn) is stochastically bounded in the sense that

lim
k→∞

lim sup
n→∞

P(ϕn 6⊆ [−k, k]d) = 0,

then we obtain quasi-convergence in distribution, i.e.
(57)

lim sup
n→∞

P(

r⋂
j=1

{ϕn ∩ Fj 6= ∅}) ≤ P(

r⋂
j=1

{A(X) ∩ Fj 6= ∅}) ∀ r ∈ N ∀ F1, . . . , Fr ∈ F .

We denote this by

ϕn
q−L−→ A(X) in F .

Proof. For every f ∈ SC(Rd) the epigraph of f is defined by

epi(f) := {(x, y) ∈ Rd+1 : f(x) ≤ y}.

It is easy to see that the correspondence between functions and epigraphs is one-to-
one. By Proposition 1.7 in [6] the epigraph of f is closed in Rd+1, i.e., epi(f) ∈ F(Rd+1).
Moreover, by Theorem 4.16 in [6] the following equivalence holds:

(58) fn → f in SC(Rd, e) ⇔ epi(fn)→ epi(f) in (F(Rd+1), δ)

Thus, if E := {epi(f) : f ∈ SC(Rd} denotes the subspace of all epigraphs, then

epi : (SC(Rd), e)→ (E, δ)

is a homeomorphism. Now, Xn
L→ X in (D, s) and Proposition 2.1 in combination

with the (traditional) Continuous Mapping Theorem (CMT) yield:

(59) X̄n
L→ X̄ in (SC(Rd), e).

Since the map epi is a homeomorhpism, another application of the CMT together with
Lemma 3.26 in [11] for subspaces ensures that (59) is equivalent to

epi(X̄n)
L→ epi(X̄) in (F(Rd+1), δ).

Therefore Pflug’s [19] Theorem 1.3 and our Lemma 2.2 show that (56) holds for the
special case ϕn = A(Xn). The general case ϕn ⊆ A(Xn) a.s. then follows immediately
upon noticing that {ϕn ∩ Kj 6= ∅, ϕn ⊆ A(Xn)} ⊆ {A(Xn) ∩ Kj 6= ∅}. Furthermore,
a combination of Vogel’s [29] Lemma 2.1 with the Portmanteau-Theorem in topological
spaces, confer Proposition 8.4.9 in [10], guarantees the equivalence of (55) and (56).
Finally, quasi-convergence in distribution (57) follows immediately from Proposition 1.9
of [8]. �

Theorem 3.5. Assume that Xn
L→ X in (D, s) and let ϕn, n ∈ N, be random closed

sets. If

∅ 6= ϕn ⊆ A(Xn) a.s. ∀ n ≥ N ∈ N,
(ϕn)n≥N is stochastically bounded
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and

A(X) = {ξ} a.s. for some random variable ξ,

then

(60) ϕn
L→ A(X) in (F , τFell).

Proof. From Theorem 3.4 we know that

(61) ϕn
L→ A(X) in (F , τmiss).

Put Ω0 :=
⋂
n≥N{∅ 6= ϕn ⊆ A(Xn)} ∩ {A(X) = {ξ}}. Then Ω0 ∈ A with P(Ω0) = 1

and A0 = {A ∈ A : A ⊆ Ω0} is the trace of A in Ω0. Consequently the semi-convergence
(61) also holds for the restrictions of ϕn, n ≥ N, and A(X) on (Ω0,A0). Therefore an
application of Proposition 1.9 of [8] immediately yields the desired result. �

Let us recapitulate our last results. In (55) and (60) we obtain weak convergence
of ϕn to A(X) in the topological spaces (F , τmiss) and (F , τFell), respectively. Thus
the question arises whether there is a third hyperspace topology on F such that the
induced weak convergence coincides with quasi-convergence in distribution (57). A nat-
ural candidate for that is the upper Vietoris topology τuV , which is generated by the
family {M(F ) : F ∈ F}. If BuV := σ(τuV ) denotes the pertaining Borel-σ algebra,
then BuV = BFell. To see this first notice that τuV ⊇ τmiss, whence BuV = σ(τuV ) ⊇
σ(τmiss) = Bmiss = BFell, where the last equality is stated in (44). On the other hand
BFell = σ({M(F ) : F ∈ F}) by Theorem 14.3(b) of [21] and so BFell ⊆ BuV upon
noticing that {M(F ) : F ∈ F} ⊆ τuV . Consequently,

(62) BuV = BFell = Bmiss.
In the literature a map ϕ : (Ω,A) → (F , τFell), which is Borel-measurable is called

random closed set. Thus (62) means that every Borel-measurable map ϕ : (Ω,A) →
(F , τ) is a random closed set no matter which hyperspace topology τ ∈ {τFell, τmiss, τuV }
is used.

Since for finitely many (arbitrary) subsets F1, . . . , Fm of Rd one has
⋂m
i=1M(Fi) =

M(
⋃m
i=1 Fi) and since F is closed with respect to finite unions it follows that

(63) {M(F ) : F ∈ F}
is a base for the upper Vietoris topology τuV . Unfortunately, as Gerald Beer, California
State University, points out (private communication) there is no countable sub-collection
of (63) which remains to be a base. This has an effect on the relation between weak
convergence in (F , τuV ) and quasi-convergence in distribution, which we define for general
random closed sets in (iv) of the following theorem.

Proposition 3.1. Let ϕn, n ∈ N, and ϕ be random closed sets defined on some probability
space (Ω,A,P). Consider the following list of statements:

(i) ϕn
L→ ϕ in (F , τuV ).

(ii) lim infn→∞ P(ϕn ∈ O) ≥ P(ϕ ∈ O) for all O ∈ τuV .
(iii) lim supn→∞ P(ϕn ∈ C) ≤ P(ϕ ∈ C) for all τuV -closed C.

(iv) ϕn
q−L−→ ϕ, i.e., by definition

lim sup
n→∞

P(

r⋂
j=1

{ϕn ∩ Fj 6= ∅}) ≤ P(

r⋂
j=1

{ϕ ∩ Fj 6= ∅}) ∀ r ∈ N ∀ F1, . . . , Fr ∈ F .

(v)

lim sup
n→∞

P(ϕn ∈ C) ≤ P(ϕ ∈ C) for all C ∈ C := {
⋂
i∈N
H(Fi) : (Fi)i∈N ⊆ F}.
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(vi)

lim inf
n→∞

P(ϕn ∈ O) ≥ P(ϕ ∈ O) for all O ∈ O := {
⋃
i∈N
M(Fi) : (Fi)i∈N ⊆ F}.

Then the following relations hold:

(i)⇔ (ii)⇔ (iii)⇒ (iv)⇔ (v)⇔ (vi)

Proof. The first equivalence holds by definition and the second one follows easily by com-
plementation. (iv) is implied by (iii), because

⋂r
j=1{ϕn ∩Fj 6= ∅} = {ϕn ∈

⋂r
j=1H(Fj)}

and
⋂r
j=1H(Fj) = F \

⋃r
j=1M(Fj) is τuV -closed. To see (iv) ⇒ (v) we adapt the ar-

guments of [29] in the proof of her Lemma 2.1. Suppose that lim supn→∞ P(ϕn ∈ C) >
P(ϕ ∈ C) for at least one C of the type C =

⋂
i∈NH(Fi) with closed sets Fi. Then

Ck :=
⋂k
i=1H(Fi) ↓ C, k →∞ and therefore

(64) P(ϕ ∈ Ck) ↓ P(ϕ ∈ C), k →∞.
By assumption α := (lim supn→∞ P(ϕn ∈ C) − P(ϕ ∈ C))/2 is positive and such that

lim supn→∞ P(ϕn ∈ C) > P(ϕ ∈ C) +α, whence there exists a subsequence (nl)l≥1 of the
natural numbers with

(65) P(ϕnl
∈ C) > P(ϕ ∈ C) + α ∀ l ∈ N.

According to (64) there is a natural k such that P(ϕ ∈ C) + α/2 > P(ϕ ∈ Ck). Since
Ck ⊇ C we arrive with (65) at

(66) P(ϕnl
∈ Ck) ≥ P(ϕnl

∈ C) > P(ϕ ∈ C) + α/2 + α/2 > P(ϕ ∈ Ck) + α/2 ∀ l ∈ N.

Taking the limit l→∞ in (66) we obtain

P(ϕ ∈ Ck) + α/2 ≤ lim supl→∞ P(ϕnl
∈ Ck) by (66)

≤ lim supn→∞ P(ϕn ∈ Ck)

= lim supn→∞ P(
⋂k
j=1{ϕn ∩ Fj 6= ∅})

≤ P(
⋂k
j=1{ϕ ∩ Fj 6= ∅}) by (iv)

= P(ϕ ∈ Ck),

which is a contradiction to α > 0. This shows that (v) holds. Furthermore,
⋂r
j=1H(Fj) =⋂∞

j=1H(Fj), if Fj := Fr for all j > r, and thus (iv) follows immediately from (v). Finally,

by complementation (v) and (vi) are equivalent. �

Proposition 3.1 tells us that weak convergence in (F , τuV ) entails quasi-convergence in
distribution, but whether the reverse direction holds is questionable. In fact, for instance
in 3.1 (vi) we only have that O ⊆ τuV . If we had equality here, than indeed weak
convergence would follow. However, recall that there is no countable base for τuV , which
in turn would guarantee this equality. Therefore, we conjecture that in general weak
convergence in (F , τuV ) does not follow from quasi-convergence in distribution. As a way
out we go over to a smaller version of the upper Vietoris topology, which on the other side
is still finer than the missing-topology. For that purpose let F∗ ⊆ F \K be any countable
family of unbounded closed sets. By analogy to τuV we define τ∗uV to be the weakest
topology that contains {M(K) : K ∈ K} ∪ {M(F ) : F ∈ F∗}. Of course we wish F∗ to
be as big as possible. For example for every p ≥ 1 let Bp(x, r) := {y ∈ Rd : |y− x|p < r}
be the open ball at x ∈ Rd with radius r with respect to the Lp-norm | · |p on Rd. Then

Fp := {[
m⋃
i=1

Bp(xi, ri)]
c : m ∈ N, xi ∈ Qd, 0 < ri ∈ Q ∀ 1 ≤ i ≤ m}

consists of all complements of finite unions of rational balls. If F∞ combines all comple-
ments of finite unions of open rectangles with rational endpoints then F∗ =

⋃
1≤p∈Q Fp∪
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F∞ is countable. One can enlarge F∗ in many ways. For instance consider a denumer-
able system containing epigraphs of lsc functions and hypographs of uper-semicontinuous
functions, straight lines, planes, affine subspaces or orthants. Then we may add any finite
union of these unbounded closed sets. In the sequel we give a countable base for our new
topology. Let K∗ be the family of all finite unions of compact rectangles with rational
endpoints.

Lemma 3.1. τ∗uV has a countable base, which is given by

{M(K ∪ F ) : K ∈ K∗, F ∈ F∗u},

where F∗u denotes the collection of all finite unions of F∗-sets.

Proof. Since K∗ and F∗u are countable, so is the given system as well. To see that it is a
base first observe that according to the construction a general base-set is given by

r⋂
i=1

M(Ki) ∩
s⋂
j=1

M(Fj) =M(

r⋃
i=1

Ki ∪
s⋃
j=1

Fj)

with Ki ∈ K and Fj ∈ F∗.
In view of

⋃r
i=1Ki =: K ∈ K and

⋃s
j=1 Fj =: F ∈ F∗u we see that {M(K ∪ F ) :

K ∈ K, F ∈ F∗u} is the canonical base of τ∗uV . Therefore each open O ∈ τ∗uV can be
represented as

(67) O =
⋃
i∈I

⋃
j∈J
M(Ki ∪ Fj)

with some (Ki)i∈I ⊆ K and (Fj)j∈J ⊆ F∗u and some index-sets I and J .
Next, we show that for every compact K there exists a sequence (Cn)n∈N ⊆ K∗ such

that Cn ↓ K. In fact, observe that for each n ∈ N we have that

K ⊆
⋃
x∈K

(x− 1/n, x+ 1/n) ⊆
⋃
x∈K

[x− 1/n, x+ 1/n].

Since K has a finite subcovering, we find mn ∈ N points xi(n) ∈ K, 1 ≤ i ≤ mn such
that

K ⊆
mn⋃
i=1

[xi(n)− 1/n, xi(n) + 1/n] =: Kn.

Put Cn := K1 ∩ . . . ∩Kn, n ∈ N. By the distributive law K∗ is closed with respect to
finite intersections, whence (Cn) ⊆ K∗ and clearly is monotone decreasing. Moreover,

(68)
⋂
n≥1

Cn = K.

In fact, the inclusion ⊇ is trivial, because Kj ⊇ K for all j. So, let x ∈ Cn for all
n ∈ N. Since Cn ⊆ Kn we find for each n ∈ N an index in ∈ {1, . . . ,mn} such that
|x− xin(n)|∞ ≤ 1/n. Consequently, ξn := xin(n) ∈ K converges to x, which must lie in
K, because K is closed. This shows (68).

It follows that

(69) M(K) =
⋃
n≥1

M(Cn).

Again, the inclusion⊇ is trivial upon noticing that Cn ⊇ K. Therefore, let F ∈M(K),
which means that F ∩K = ∅. Now, assume that F 6∈

⋃
n≥1M(Cn), i.e., F ∩Cn 6= ∅ ∀ n ∈

N. Thus there exists a sequence (xn) with xn ∈ F ∩ Cn for all n ≥ 1. In particular,
for each m ∈ N the sequence (xn)n≥m runs through the compact set F ∩ Cm, because
Cn ⊆ Cm. Hence (xn)n≥m converges to some x ∈ F ∩ Cm as n → ∞ for all m ≥ 1,
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where x does not depend on m. Infer that x ∈ F ∩
⋂
m≥1 Cm = F ∩K by (68). This is

a contradiction to F ∩K = ∅, which yields (69).
Finally, let O ∈ τ∗uV be an arbitrary open set, which as we have seen admits the

representation (67). According to (69) for every i ∈ I there exists a sequence (C
(i)
n )n≥1 ⊆

K∗ such that M(Ki) =
⋃
n≥1M(C

(i)
n ). Inserting this in (67) and taking into account

that M(Ki ∪ Fj) =M(Ki) ∩M(Fj) gives by the distributive law:

(70) O =
⋃
i∈I

⋃
j∈J

⋃
n≥1

(M(C(i)
n ) ∩M(Fj))

=
⋃
i∈I

⋃
j∈J

⋃
n≥1

M(C(i)
n ∪ Fj) =

⋃
j∈J

⋃
(i,n)∈(I×N)

M(C(i)
n ∪ Fj).

This yields the desired result upon noticing that {Fj : j ∈ J} ⊆ F∗u and {C(i)
n : (i, n) ∈

(I × N)} ⊆ K∗. �

By construction τmiss ⊆ τ∗uV ⊆ τuV , and so by (62) the Borel-σ algebra B∗uV := σ(τ∗uV )
also coincides with BFell. Thus we can extend our conclusion of (62) by saying that every
Borel-measurable map ϕ : (Ω,A) → (F , τ) is a random closed set whatever hyperspace
topology τ ∈ {τmiss, τ∗uV , τuV , τFell} is used.

Proposition 3.2. If ϕn, n ∈ N, and ϕ are random closed sets, then ϕn
q−L−→ ϕ entails

ϕn
L−→ ϕ in (F , τ∗uV ).

Proof. Let O ∈ τ∗uV . By Lemma 3.1 there exist (Ki)i≥1 ⊆ K∗ and (Fi)i≥1 ⊆ F∗u such
that O =

⋃
i≥1M(Ki ∪ Fi). Since Ki ∪ Fi ∈ F for all i ≥ 1, we can infer that τ∗uV ⊆ O.

An application of Proposition 3.1 yields the desired result. �

Combining Theorem 3.4 and Proposition 3.2 immediately results in the following

Theorem 3.6. Assume that Xn
L→ X in (D, s). Let ϕn, n ∈ N, be random closed sets

with ϕn ⊆ A(Xn) a.s. for every n ∈ N. If (ϕn) is stochastically bounded then

ϕn
L−→ A(X) in (F , τ∗uV ).

In case of ϕn = A(Xn) we obtain that

A(Xn)
L−→ A(X) in (F , τ∗uV ).

We end our investigation of random closed arginf-sets by presenting a counterpart of
Pflug’s [19] Theorem 1.4 on confidence sets for infimizing points. In fact, in section 4
below we will use this result to construct confidence regions for parameters θ in statistics
as described in Example 1.1.

Theorem 3.7. Assume that Xn
L→ X in (D, s). Let ϕn, n ∈ N, be random closed sets

with ϕn ⊆ A(Xn) a.s. for every n ∈ N and such that (ϕn) is stochastically bounded.
For a given α ∈ (0, 1) let G = Gα be an open subset of Rd with P(A(X) ⊆ G) ≥ 1−α.

Then

lim inf
n→∞

P(ϕn ⊆ G) ≥ 1− α.

Proof. First note that Gc is closed by assumption. Since M ⊆ G ⇔ M ∩ Gc = ∅ for
every set M ⊆ Rd it follows from (57) with r = 1 by complementation that

lim inf
n→∞

P(ϕn ⊆ G) = lim inf
n→∞

P(ϕn∩Gc = ∅) ≥ P(A(X)∩Gc = ∅) = P(A(X) ⊆ G) ≥ 1−α.

�
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Once we have our results on sets ϕn of infimizing points we easily obtain limit theorems
for single selections ξn of A(Xn) simply by considering the special case ϕn = {ξn}.

Theorem 3.8. Let ξn be random variables with ξn ∈ A(Xn) a.s. ∀ n ≥ N . Put
C := A(X). If

Xn
L→ X in (D, s),

then it follows that

lim sup
n→∞

P(ξn ∈ K) ≤ TC(K) ∀ K ∈ K,

where

TC(K) := P(C ∩K 6= ∅) = P(A(X) ∩K 6= ∅).

Proof. Set ϕn := {ξn}, n ≥ N . Then each ϕn is a random closed set with ϕn ⊆ A(Xn)
a.s. for all n ≥ N . Since {ϕn ∩ K 6= ∅} = {ξn ∈ K} for all compact K, the assertion
follows from (56) with r = 1. �

Recall that C = A(X) is a random closed set, that is a measurable mapping C :
(Ω,A,P)→ (F ,BFell). In the sequel we may replace Rd by any locally compact, second
countable, Hausdorff space (lcscH) E, confer [14]. Recall that by Uryson’s Theorem E
is metrizable. Let F = F(E),G = G(E),K = K(E),B = B(E) denote the classes of all
closed, open, compact, and Borel subsets, respectively. Then the construction of the Fell-
topology τFell = τFell(E) and the pertaining Borel-σ algebra BFell = BFell(E) remains
the same including the relation (45), i.e.,

(71) BFell(E) = σ({M(K) : K ∈ K(E)}).

In particular every measurable mapping C : (Ω,A,P) → (F(E),BFell(E)) is called
random closed set in E. For any such random closed set C the set-function TC : K → R
defined by TC(K) := P(C ∩K 6= ∅) is called capacity functional of C. The properties of
P lead to the following characteristics of TC :

(T1) TC(∅) = 0; 0 ≤ TC ≤ 1;
(T2) TC is upper-semi-continuous, i.e.,

Kn ↓ K in K ⇒ TC(Kn) ↓ TC(K);

(T3) TC is monotone increasing on K and for K1,K2, . . . ,Kn ∈ K, n ≥ 2,

TC

( n⋂
i=1

Ki

)
≤

∑
∅6=I⊆{1,...,n}

(−1)|I|+1TC

(⋃
i∈I

Ki

)

Every functional T : K → R satisfying (T1)-(T3) is called Choquet capacity (func-
tional). The following two results on Choquet capacities are well-known in the theory of
random closed sets, confer [17], [14] or [15].

Theorem 3.9. (Choquet) Every probability measure Q on (F(E),BFell(E)) determines
a Choquet capacity functional T on K(E) through the correspondence

(72) T (K) = Q(H(K)) ∀ K ∈ K(E).

Conversely, every Choquet capacity functional T on K(E) determines a unique prob-
ability measure Q on (F(E),BFell(E)) that satisfies the relation (72)

Each Choquet capacity T can be extended onto the Borel-σ algebra B(E) by

T (B) := sup{T (K) : K ∈ K,K ⊆ B}, B ∈ B(E).
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Theorem 3.10. (Matheron) The extension T : B(E) → E is consistent in the sense
that

T (B) = Q(H(B)) ∀ B ∈ B(E),

where the hitting sets H(B) = {F ∈ F : F ∩B 6= ∅} in fact belong to BFell(E).

As an immediate consequence the extension T has the following properties in addition
to (T1) and (T2):

(T3)∗ T is monotone increasing on B and for B1, B2, . . . , Bn ∈ B, n ≥ 2,

T
( n⋂
i=1

Bi

)
≤

∑
∅6=I⊆{1,...,n}

(−1)|I|+1T
(⋃
i∈I

Bi

)
(T4) T is σ-continuous from below:

Bn ↑ B in B ⇒ T (Bn) ↑ T (B).

For a better understanding of our following results we like to discuss briefly some facts
on capacity functionals. In view of Choquet’s Theorem we see that capacity functionals
play the same role as distribution functions do in case of random vectors in the euclidian
space. In fact there is another analogy, namely one can also characterize weak conver-
gence of random closed sets in terms of capacity functionals, confer [13], [15] or [22].
In contrast to distribution functions a capacity functional T is a set-function defined on
the Borel-sets of E with properties (T1), (T2), (T3∗) and (T4), which are satisfied for
every probability measure on B(E). On the other hand T is merely sub-additive and in
general lacks additivity. Thus capacity functionals usually are not probability measures,
but appropriate generalizations thereof.

Theorem 3.11. (convergence in distribution to a random closed set) Let ξn be random
variables with ξn ∈ A(Xn) a.s. ∀ n ≥ N . Put C := A(X). If

Xn
L→ X in (D, s),

and (ξn)n≥N is stochastically bounded, i.e.

lim
k→∞

lim sup
n→∞

P(|ξn| > k) = 0,

then it follows:

(73) lim sup
n→∞

P(ξn ∈ F ) ≤ TC(F ) ∀ F ∈ F(Rd).

Proof. As in the proof of Theorem 3.8 we consider the special random closed sets ϕn =
{ξn}. Recall that | · | denotes the maximum-norm on Rd. Thus {|ξn| > k} = {ϕn *
[−k, k]d}, whence (ϕn) is stochastically bounded and the assertion follows from (57) with
r = 1. �

Inequality (73) formally looks exactly like the equivalent characterization of conver-
gence in distribution (weak convergence) given by the Portmanteau-Theorem, confer [4].
However, the main difference between (73) and the Portmanteau-Theorem lies in that
here TC needs not to be a probability measure as pointed out above. Nevertheless,
TC has many features in common with probability measures. This leads us to intro-
duce a new concept of convergence. In our definition below notice that by Choquet’s
Theorem in combination with the canonical construction every Choquet capacity T is
the capacity functional of some random closed set C in E, that means T = TC . (Put
(Ω,A,P) := (F ,BFell, Q), where Q is the probability measure determined by T , and let
C : Ω→ F be the identity map.) We say that C is associated with T.
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Definition 3.1. (a) Let Pn, n ∈ N, be probability measures on (E,B(E)) and T be a
Choquet capacity. If

lim sup
n→∞

Pn(F ) ≤ T (F ) ∀ F ∈ F(E),

then we say that Pn converges weakly to T and denote this by Pn
w−C−→ T .

(b) Let ξn : (Ωn,An,Pn)→ (E,B(E)), n ∈ N, be random variables. If the distributions
Pn ◦ ξ−1n of ξn converge weakly to T , then we say that ξn converges in distribution to
C, where C : (Ω,A,P) → (F(E),BFell(E)) is the random closed set associated with T .
Therefore, we alternatively write:

ξn
L→ C.

Notice that this is equivalent to:

(74) lim sup
n→∞

Pn(ξn ∈ F ) ≤ P(C ∩ F 6= ∅) ∀ F ∈ F(E).

With this new definition we can now say that under the assumptions of Theorem 3.11
the sequence (ξn) of infimizing points converges in distribution to the random closed set
A(X). Of course for an application of the Portmanteau-Theorem the question remains
how one can decide whether TC actually is a probability measure or not. So, let us
consider an arbitrary random closed set C whose capacity functional TC is a probability
measure. Then (e.g. by the canonical construction) we find a random variable ξ on some
probability space (Ω,A,P) such that ξ has distribution TC , i.e., P ◦ ξ−1 = TC . Conclude
that D := {ξ} is a random closed set with

TD(K) = P({ξ} ∩K 6= ∅) = P(ξ ∈ K) = P ◦ ξ−1(K) = TC(K) ∀ K ∈ K.

Thus TC = TD on K and from Choquet’s Theorem we can infer that C
L
= D = {ξ}.

Inversely, if C
L
= {ξ} then TC = P ◦ ξ−1. Hence we have shown a first answer to our

question:

(75) TC is a probability measure ⇔ C
L
= {ξ} for some random variable ξ.

Actually, we can improve this result as follows.

Proposition 3.3. Let TC be the capacity functional of a random closed set C defined on
some probability space (Ω,A,P). Then the following statements are equivalent:

(i) TC is a probability measure;
(ii) C = {ξ} P - a.s. for some random variable ξ : (Ω,A,P)→ E.

Proof. Since equality almost surely entails equality in distribution it follows from (75)
that we only have to show the direction (i)⇒ (ii). For that purpose first observe that

(76) {card(C) 6= 1} = {card(C) = 0} ∪ {card(C) ≥ 2},

where

(77) P(card(C) = 0) = P(C = ∅) = P(C ∩ E = ∅) = 1− TC(E) = TC(∅) = 0

by using the complement rule for TC . Next, let us introduce the countable family

U := {Bε(x) : 0 < ε ∈ Q, x ∈ ∆}

of open balls, where ∆ is countable and dense in E, which in fact is separable by as-
sumption of second countability. Then

{card(C) ≥ 2} =
⋃

U,V ∈U,U∩V=∅

{C ∩ U 6= ∅, C ∩ V 6= ∅}.
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Since, e.g., {C ∩ U 6= ∅} = C−1(H(U)) and H(U) ∈ BFell by Matheron’s Theorem we
can infer that {card(C) ≥ 2} ∈ A. Moreover,

(78) P(card(C) ≥ 2) ≤
∑

U,V ∈U,U∩V=∅

P(C ∩ U 6= ∅, C ∩ V 6= ∅).

Here, each summand pertaining to the index (U, V ) vanishes, because by the inclusion-
exclusion formula we have that

(79)

P(C ∩ U 6= ∅, C ∩ V 6= ∅)
= P(C ∩ U 6= ∅) + P(C ∩ V 6= ∅)− P({C ∩ U 6= ∅} ∪ {C ∩ V 6= ∅}
= TC(U) + TC(V )− P(C ∩ (U ∪ V ) 6= ∅)
= TC(U) + TC(V )− TC(U ∪ V )
= 0,

where the last equality follows from the additivity of TC upon noticing that U and V
are disjoint. Combining (76)-(79) gives P(card(C) 6= 1) = 0. Put Ω0 := {card(C) = 1}.
Then P(Ω0) = 1 and for every ω ∈ Ω0 there exists exactly one point ξ(ω) ∈ E such that
C(ω) = {ξ(ω)}. By defining ξ(ω) := 0 for ω 6∈ Ω0 we obtain a map ξ : Ω→ E, which is
measurable. Indeed for every Borel-set B of E we have that

{ξ ∈ B} = (C−1(H(B)) ∩ Ω0) ∪ (Ωc0 ∩ {0 ∈ B}),

where Ωc0 denotes the complement of Ω0 in Ω. Since C is a random closed set and Ω0 ∈ A
this equality ensures {ξ ∈ B} ∈ A and hence measurability of ξ. To sum up we have
shown that C = {ξ} on Ω0 with P(Ω0) = 1 and measurable map ξ as desired for (ii). �

Now we are in the position to give a sufficient and necessary condition for distributional

convergence. Here recall that in the classical definition of weak convergence Pn
w→ P the

limit P a priori is a probability measure and not only a Choquet-capacity as in our
Definition 3.1.

Theorem 3.12. (convergence in distribution) Let ξn be random variables with ξn ∈
A(Xn) a.s. ∀ n ≥ N . If

Xn
L→ X in (D, s)

and (ξn)n≥N is stochastically bounded then

P ◦ ξ−1n
w→ TA(X)

if and only if A(X) = {ξ} a.s. for some random variable ξ. In this case:

ξn
L→ ξ in Rd.

Proof. If A(X) = {ξ} a.s. then TA(X) = P ◦ ξ−1 is a probability measure and weak con-
vergence follows from (73) in combination with the Portmanteau-Theorem. Conversely,
if weak convergence holds then TA(X) is a probability measure by definition and we may
apply Proposition 3.3. �

For convenience let us restate our conclusions by means of the following short diagram:

P ◦ ξ−1n
w→ TA(X) ⇔ A(X) = {ξ} a.s. ⇒ ξn

L→ ξ in Rd.

It illustrates that we do not claim the validity of the reverse conclusion in the second
part. To be specific, if ξn converges in distribution to some ξ then one can not infer that
the limit process X has an a.s. unique infimizing point, which then necessarily would
coincide with ξ. We demonstrate this by the following counter-example. Consider the
continuous functions Xn(t) := X(t) := 1{|t|>1}(|t| − 1), t ∈ Rd, which can be taken as

stochastic processes with constant value, and therefore Xn
L→ X in (D, s). Observe that
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A(Xn) and A(X) are equal to the closed ball {t ∈ Rd : |t| ≤ 1}. If ξn := t0 with any

fixed point t0 chosen from the closed ball, then ξn
L→ ξ := t0, but A(X) 6= {ξ}.

It is possible that for some specifically chosen infimizing points ξn = a(Xn) conver-

gence in distribution ξn = a(Xn)
L→ ξ = a(X) holds in the non-unique case (A(X) is

not a singleton with positive probability) as long as additional requirements are fulfilled.
Theorem 3.2 of Seijo and Sen [23] goes exactly in this direction. They introduce the
functionals a=sargmax and a=largmax, which give in a well-defined sense the smallest
and largest infimizing point of a function f ∈ D(Rd). For Xn and X with trajecto-
ries of some special type and so-called associated jump processes Γn and Γ it is shown
that if (Xn,Γn) converges in distribution to (X,Γ) and (sargmax(Xn)) is stochastically

bounded, then in fact sargmax(Xn)
L→ sargmax(X). The same assertion holds for the

selection largmax. Moreover, they give an example which demonstrates that weak con-
vergence of Xn alone is not enough to guarantee weak convergence of the pertaining

infimizers. More precisely, let a be any measurable selection. Then if (a) Xn
L→ X in

(D(Rd), s) and (b) a(Xn) = OP(1), one cannot conclude that a(Xn)
L→ a(X). But The-

orem 3.11 says that a(Xn)
L→ A(X) and we conjecture that under (a) and (b) this is the

furthest reaching conclusion one can draw. On the other hand convergence in distribution
to A(X) suffices for the construction of asymptotic confidence intervals in statistics. We
will show this in the next section by using the following Continuous Mapping Theorem
(CMT). Here, M denotes the closure of the set M .

Proposition 3.4. (Extended CMT) Let ξn : (Ωn,An,Pn) → (E,B(E)), n ∈ N, be ran-
dom variables and let C : (Ω,A,P)→ (F(E),BFell(E)) be a random closed set. Assume
that

ξn
L→ C.

Consider a further lcscH space U and a measurable mapping h : E → U such that
TC(Dh) = 0 with Dh the set of all discontinuity points of h, which is well-known to lie
in B(E), confer [4], p.243. Then

(80) lim sup
n→∞

Pn(h(ξn) ∈ F ) ≤ TC ◦ h−1(F ) ∀ F ∈ F(U),

and

(81) h(ξn)
L→ h(C).

If C is compact P-a.s. then h(C) is compact a.s. as well and

(82) h(ξn)
L→ h(C).

Proof. First observe that h−1(F ) ⊆ h−1(F ) ∪ Dh for each closed F in U . Since TC is
monotone and sub-additive it therefore follows that

lim sup
n→∞

Pn(h(ξn) ∈ F ) ≤ lim sup
n→∞

Pn(ξn ∈ h−1(F )) ≤ lim sup
n→∞

Pn(ξn ∈ h−1(F ) )

≤ TC(h−1(F )) ≤ TC(h−1(F ) + TC(Dh) = TC ◦ h−1(F ).

Since {C ∩ h−1(F ) 6= ∅} = {h(C) ∩ F 6= ∅} ⊆ {h(C) ∩ F 6= ∅} we can infer that

TC ◦ h−1(F ) = TC(h−1(F )) = P(C ∩ h−1(F ) 6= ∅) ≤ P(h(C) ∩ F 6= ∅) = T
h(C)

(F ),

and (81) follows from (80). For the proof of (82) notice that by assumption P(C ∩Dh =
∅) = 1. So, if Ch := E \Dh is the set of all continuity points of h, then P(C ⊆ Ch) = 1,
because {C ∩ Dh = ∅} = {C ⊆ Ch}. Consequently, by assumption on C the event
Ω0 := {C ⊆ Ch} ∩ {C ∈ K(E)} has probability one. Moreover, on Ω0 our map h is
continuous on the compact set C. Recall from Analysis that the continuous image of
a compact set is compact, whence Ω0 ⊆ {h(C) ∈ K(U)} and thus h(C) is compact
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in U a.s. Let A0 := A ∩ Ω0 = {A ∈ A : A ⊆ Ω0} and P0 be the restriction of
P on A0. Since the restriction C : (Ω0,A0,P0) → (F(E),BFell(E)) is measurable,
h(C) : (Ω0,A0,P0) → (F(U),BFell(U)) is a random closed set as well. This follows
from (71) and {h(C) ∩ K = ∅} = {C ∩ h−1(K) = ∅} = C−1(M(h−1(K))) ∈ A0 upon
noticing the second part of Matheron’s Theorem and h−1(K) ∈ B(E) for all K ∈ K(U)
by measurability of h.

Finally, TC ◦h−1(F ) = P0(C ∩h−1(F ) 6= ∅) = P0(h(C)∩F 6= ∅) and (82) follows from
(80) and the defining relation (74). �

Notice that ξn
L→ {ξ} is equivalent to ξn

L→ ξ so that the above proposition is a
generalization of the classical CMT, confer, e.g., Theorem 1.3 in chapter 19 of [24].

As omnipresent requirement in our last theorems we have to show distributional

convergence Xn
L→ X in (D(Rd), s). Therefore we end this section with a necessary

and sufficient condition given by [12]. It reduces the problem to the Skorokhod space
(D([−a, a]), s) of [16] with compact rectangle [−a, a] := [−a1, a1] × . . . × [−ad, ad], a =
(a1, . . . , ad) ∈ Rd with ai > 0 for all 1 ≤ i ≤ d (a > 0). Observe that for each cadlag
stochastic process X = {X(t) : t ∈ Rd} the pertaining restriction X(a) := {X(t) : t ∈
[−a, a]} can be considered as random element in (D([−a, a]), s).

Theorem 3.13. (Lagodowski and Rychlik) Xn
L→ X in (D(Rd), s) if and only if

(83) X(a)
n

L→ X(a) in (D([−a, a]), s) ∀ 0 < a = (a1, . . . , ad) ∈ T
where T := {t ∈ Rd : πt continuous P ◦X−1 a.e.}.

This result has counterparts for continuous stochastic processes, confer Proposition
14.6 in [11], and for those whose trajectories are locally bounded, confer Theorem 1.6.1
in [27].

The crucial point is that for the proof of (83) there exist manageable sufficient criteria
(e.g. moment-criteria), confer [3], [4] or [18] in case d = 1 and [16], [2], [25] or [26] for
d ≥ 1.

4. Applications to M-estimators

Recall the M -estimator of Example 1.1 in the introduction:

(84) θ̂n = (θ̂n,1, . . . , θ̂n,d) = a(Mn) = arginf(Mn)

with criterion function Mn ∈ D(Rd) and its theoretical counterpart θ = (θ1, . . . , θd) ∈ Rd,
which as parameter of interest is to be estimated.

Let Γn be a (d×d) diagonal matrix with positive entries αn,1, . . . , αn,d on the diagonal.
Define

Xn(t) = γn{Mn(θ + Γ−1n t)−Mn(θ)}, t ∈ Rd,
with some positive sequence (γn) ⊆ R. In Lemma 2.2 put f = Mn, a = γn, b = Mn(θ)
and λ(t) = Γn(t− θ). Since λ−1(t) = θ + Γ−1n t, we first observe that g = Xn. It follows

from Lemma 2.2 (i) and (iii) that ξn := Γn(θ̂n−θ) is a random variable with ξn ∈ A(Xn),
where Xn is cadlag. Now, assume that we are able to prove that

(85) Xn
L→ X in (D, s)

and that (ξn) is stochastically bounded, i.e.,

(86) ξn = Γn(θ̂n − θ) = OP(1).

Then Theorem 3.11 yields that

ξn
L→ A(X) =: C.
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Recall that | · | denotes the maximum-norm on Rd, which is continuous on its entire
domain. If C = A(X) is compact a.s. then our extended CMT stated in Proposition 3.4
ensures that

(87) |ξn|
L→ |C|.

This limit theorem (87) can be used for the construction of an asymptotic confidence
region as follows. For every r > 0 consider the random open intervals

In(r) := (θ̂n,1 −
r

αn,1
, θ̂n,1 +

r

αn,1
)× · · · × (θ̂n,d −

r

αn,d
, θ̂n,d +

r

αn,d
).

We observe that

lim infn→∞ P(θ ∈ In(r))
= lim infn→∞ P(|ξn| < r) by definitions
= 1− lim supn→∞ P(|ξn| ≥ r)
= 1− lim supn→∞ P(|ξn| ∈ [r,∞))
≥ 1− P(|C| ∩ [r,∞) 6= ∅) by (87), (74), [r,∞) ∈ F(R)
= P(|C| ∩ [r,∞) = ∅)
= P(|C| ⊆ (−∞, r))
= P(supx∈C |x| < r) since C is compact a.s.
= F (r−),

where F denotes the distribution function of the real random variable σ := supx∈C |x|.
Thus we can conclude as follows: If qα := F−1(1− α) is the (1− α)-quantile of F , then
In(r) is an asymptotic confidence interval for θ at level 1− α whenever r > qα, that is

lim inf
n→∞

P(θ ∈ In(r)) > 1− α ∀ r > qα,

and
lim inf
n→∞

P(θ ∈ In(qα)) ≥ 1− α if qα is a continuity-point of F.

In general qα is an unknown quantity for the statistician, but it can be approximated
by a Monte-Carlo method. For that purpose first notice that the distribution Q of the
limit process X in (85) usually depends on the unknown parameter θ, that is Q = Qθ.
Therefore we generate m ∈ N processes X(1), . . . , X(m) i.i.d. with common distribution
Qθ̂n . For each 1 ≤ i ≤ m compute C(i) := A(X(i)) and σ(i) := supx∈C(i) |x|. Let Fm be

the empirical distribution function pertaining to σ(1), . . . , σ(m). Then qm,α := F−1m (1−α)
is a reasonable estimate for qα.

A more general construction goes as follows. Let ∅ 6= φn ⊆ A(Mn). Then

ϕn := Γn(φn − θ) = λ(φn) ⊆ A(Xn),

where the inclusion holds by Lemma 2.2 (iii). Now, if (ϕn) is stochastically bounded,
then (85) and Theorem 3.4 ensure that

Γn(φn − θ)
q−L−→ A(X).

Choose an open G ⊆ Rd with P(A(X) ⊆ G) ≥ 1 − α. Observe that {Γn(φn − θ) ⊆
G} ⊆ {θ ∈ φn − Γ−1n G}. So, if Cn := φn − Γ−1n G, then

lim inf
n→∞

P(θ ∈ Cn) ≥ lim inf
n→∞

P(Γn(φn − θ) ⊆ G) ≥ 1− α,

where the inequality follows from Theorem 3.7. Thus Cn is an (asymptotic) confidence
region for θ at level 1− α. In any case Cn becomes smaller (with respect to the relation

⊆) for the special choice φn = {θ̂n}. The pertaining confidence region Ĉn := θ̂n − Γ−1n G

has (d-dimensional) volume λd(Ĉn) = {
∏d
i=1 αn,i}−1λd(G) by Proposition 6.1.2 in [5].

Consequently the optimal confidence region is given by Ĉn,opt = θ̂n − Γ−1n Gopt with

Gopt = argmin{λd(G) : G ∈ G,P(A(X) ⊆ G) ≥ 1− α)}.
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The analytical solution of this minimization problem is -if at all- hard to find. The
special choice G := (−r, r)d yields Ĉn = In(r) from above.
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