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GEOMETRIC ENTROPY IN BANACH SPACES

We introduce and study two notions of entropy in a Banach space X with a normal-

ized Schauder basis B = (en). The geometric entropy E(A) of a subset A of X is
defined to be the infimum of radii of compact bricks containing A, where a brick KB,E
is the set of all sums of convergent series

∑
anen with |an| ≤ εn, E = (εn), εn ≥ 0.

The unconditional entropy E0(A) is defined similarly, with respect to 1-unconditional
bases of X. We obtain several compactness characterizations for bricks (Theorem 3.7)

useful for main results. If X = c0 then the two entropies of a set coincide, and equal
the radius of a set. However, for X = `2 the entropies are distinct. The unconditional

entropy of the image T (BH) of the unit ball of a separable Hilbert space H under

an operator T is finite if and only if T is a Hilbert-Schmidt operator, and moreover,
E0

(
T (BH)

)
= ‖T‖HS , the Hilbert-Schmidt norm of T . We also obtain sufficient

conditions on a set in a Hilbert space to have finite unconditional entropy. For Ba-

nach spaces without a Schauder basis we offer another entropy, called the Auerbach
entropy. Finally, we pose some open problems.

1. Introduction

In this paper, we discuss the structure of compact sets in Banach spaces and introduce
related geometric entropies. The main characteristic of a set is its size in various direc-
tions. This investigation was initiated by the first-named author in [7]. Originally it is
motivated by the theory of stochastic flows. To describe the problem more precisely, con-
sider the following example. Let x(t), t ∈ [0; 1] be a continuous in square mean centered
Gaussian process. When studying the filtration problem related to this process [8] or the
existence of the local time for it [3], it is natural to ask of how much independency does it
have. This question can be formulated more precisely if we remind that, for jointly Gauss-
ian centered random variables the orthogonality in L2-sense means their independency.
Consequently, one can try to evaluate the independency in the process x as follows. For
the set of random variables x(t1), . . . , x(tn) define new variables πx(t1), . . . , πx(tn) as the
orthogonal complements of x(tk) to the linear span of x(ti), i 6= k. Then

sup
t1≤...≤tn,n≥1

n∑
k=1

E(πx(tk))2

can be considered as a total amount of independency in x. Noting that the set {x(t), t ∈
[0; 1]} is compact in the Hilbert space of square integrable random variables and keeping
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in mind more general sets of parameters, one can consider the same procedure for an
arbitrary compact K in a real separable Hilbert space H. For a sequence {xn;n ≥ 1}
of elements of K define the new sequence {πxn;n ≥ 1}, where πxk is the orthogonal
complement of xk to the closed linear span of xi, i 6= k.

Definition 1.1 ([7]). The quadratic entropy of K ⊆ H is defined by

H2(K) = sup
{xn;n≥1}

∞∑
k=1

‖πxn‖2,

where the sup is taken over all sequences of elements of K.

In [7] some basic properties of the quadratic entropy were studied. In particular,
it was shown that a compact set need not have finite quadratic entropy, and sufficient
conditions on a set to have finite quadratic entropy were given. It turned out that the
condition H2(K) < +∞ is closely related to the following value

σ2(K) = sup
(en)∞n=1

∞∑
n=1

sup
x∈K

(x, en)2,

where the exterior sup is taken over all orthonormal bases (en)∞n=1 in H. The condition
σ2(K) < +∞ leads to the conclusion H2(K) < +∞. The interest to compact sets with
finite σ2-characteristics was inspired by the consideration of admissible shifts for Gaussian
measures in [18]. In the mentioned paper it was shown that σ2(K) is finite if and only if
there exists a Hilbert–Schmidt operator A on H such that K ⊆ A(BH) (here BH is the
closed unit ball of H). In this way one can suggest that the finiteness of H2(K) depends
on the possibility to cover K by the some special sets in H. As such sets one can take
the infinite-dimensional bricks with finite main diagonal. The ideas described above were
essentially based on the geometry of a Hilbert space H. But the same considerations for
sets of random variables which are non-Gaussian or (and) do not have the second moment
naturally lead to similar objects in a Banach space. Although there is no analogue of the
orthogonal complement in a Banach space, it is still possible to define bricks relatively
to a Schauder basis. Using this approach, one can define a geometric entropy in Banach
spaces. It occurs that there are different types of bricks in general (depending on the
properties of a basis). This is the reason for the existence of different quantities related
to H2 for the case of a Hilbert space.

In the present paper we introduce and provide a systematic study of the geometric
entropies in Banach spaces. The paper is organized as follows. In Section 1 we summarize
necessary definitions and facts on Banach spaces. Section 2 contains different definitions
of a brick in a Banach space, statements about the relationships between them and
examples. In Section 3 we define and study different radii of a brick, all equal the
maximum norm of elements for compact bricks. The main result here (Theorem 3.9)
gives several characterizations of compact bricks. In Section 4 we introduce and study the
geometric entropies. Proposition 4.7 gives another equivalent definition of the entropies,
and Proposition 4.8 shows that in the Banach space c0 both entropies of a set equal its
radius (the last observation is very natural, because the closed unit ball of c0 is a brick).
Section 5 is devoted to a study of the entropies in an infinite dimensional separable Hilbert
space H. Theorem 5.1 asserts that the unconditional entropy of the image of the closed
unit ball under an operator T : H → H is finite if and only if T is a Hilbert-Schmidt
operator. Moreover, the unconditional entropy equals the Hilbert-Schmidt norm of T . In
particular, this gives a simple method to evaluate the unconditional entropy of concrete
sets. Fir instance, E0(BX) =

√
n, where BX is the closed unit ball of an n-dimensional

subspace X of H. Theorem 5.5 establishes sufficient conditions on a compact set in a
Hilbert space to have finite unconditional entropy, and Theorem 5.6 gives examples of
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sets in `2 with distinct entropy and unconditional entropy. In Section 6 we offer another
type of a geometric entropy, called the Auerbach entropy, for Banach spaces without a
Schauder basis. In the last Section 7 we pose several problems.

Remark that our notions of entropies have no connections with the other ones, like
metric entropy [6], topological entropy [4], dynamic entropy [12]

Acknowledgements. The authors thank V. Konarovskiy, O. Maslyuchenko and
V. Mykhaylyuk for valuable remarks. They also thank the anonymous referees for point-
ing out of types and mistakes, and especially for the idea of Theorem 3.7.

1.1. Necessary information on bases in Banach spaces. All linear (e.g., normed,
Banach, Hilbert) spaces are considered over the reals.

A subset A of a Banach space X is called precompact if for every ε > 0, A contains a
finite ε-net, that is, a finite collection x1, . . . , xm ∈ A with (∀x ∈ A)(∃k ∈ {1, . . . ,m})‖x−
xk‖ ≤ ε. By the well known Hausdorff criterion (which is valid for metric spaces), A is
precompact if and only if its norm closure A is compact in X.

1.1.1. Bases in Banach spaces. We follow mainly [13] (see also [1], [17]). Recall that a
sequence (en)∞n=1 in X is called a basis (more precisely, a Schauder basis) of X if for
every x ∈ X there is a unique sequence of scalars (an)∞n=1 such that x =

∑∞
n=1 anen. In

this case, the coefficients an = e∗n(x) are continuous linear functionals of x and called
biorthogonal functionals. So, x =

∑∞
n=1 e

∗
n(x) en for each x ∈ X. The biorthogonal func-

tionals possess the following property: e∗i (ej) = δi,j . Moreover, this property determines
the biorthogonal functionals: for every sequence (fn)∞n=1 in X∗ the condition fi(ej) = δi,j
for all i, j implies that fi = e∗i for all i. The partial sums projections Pn of X defined
by Pnx =

∑n
k=1 e

∗
k(x) ek, x ∈ X, calling the basis projections, are uniformly bounded

in n, and the number K = supn ‖Pn‖ < ∞ is called the basis constant of (en)∞n=1. A
basic sequence is any sequence (en)∞n=1 in X which is a basis of some subspace X0 of X
(more precisely, a basis of its closed linear span [en]∞n=1). A sequence (en)∞n=1 of nonzero
elements of X is a basic sequence if and only if there is a number K ∈ [1,+∞) such that∥∥∥ n∑

k=1

akek

∥∥∥ ≤ K ∥∥∥ m∑
k=1

akek

∥∥∥;

for all 1 ≤ n < m and all collections of scalars (ak)mk=1. A basis (basic sequence) (en)∞n=1

is said to be normalized provided that ‖en‖ = 1 for all n. If (en)∞n=1 is a basic sequence
then (en/‖en‖)∞n=1 is a normalized basic sequence. Let (en)∞n=1 be a basic sequence in
X; (an)∞n=1 a sequence of scalars and 0 ≤ k1 < k2 < . . . integers. A sequence (un)∞n=1 of
nonzero vectors in X of the form

un =

kn+1∑
i=kn+1

aiei

is called a block basis of (en)∞n=1. Every block basis (in particular, every subsequence) of
a basic sequence is itself a basic sequence with a basis constant which does not exceed
that of (en)∞n=1.

1.1.2. Unconditional bases. A series
∑∞
n=1 xn of elements of a Banach space X is said to

be unconditionally convergent if for any permutation1 of the positive integers ϕ : N→ N
the series

∑∞
n=1 xϕ(n) converges. We need the next criterion of unconditional convergence

[17, Lemma 16.1].

Lemma 1.2. For any sequence (xn)∞n=1 in a Banach space X the following assertions
are equivalent

1i.e., a bijection



GEOMETRIC ENTROPY IN BANACH SPACES 13

(i) the series
∑∞
n=1 xn unconditionally converges;

(ii) for any sequence of signs θn = ±1 the series
∑∞
n=1 θnxn converges;

(iii) for any sequence of scalars (an)∞n=1 such that |an| ≤ 1, n = 1, 2, . . . the series∑∞
n=1 anxn converges.

A basis (en)∞n=1 of a Banach space X with the biorthogonal functionals (e∗n)∞n=1 is
called an unconditional basis if the series

∑∞
n=1 e

∗
n(x) en converges unconditionally for

every x ∈ X. In this case, for any subset I ⊆ N the projection PIx =
∑
n∈I e

∗
n(x) en

is well defined on X and bounded, as well as for any sequence of signs Θ = (θn)∞n=1,
θn = ±1 the operator MΘx =

∑∞
n=1 θne

∗
n(x) en. Moreover, supI ‖PI‖ ≤ supΘ ‖MΘ‖ ≤

2 supI ‖PI‖ <∞ and the number supΘ ‖MΘ‖ is called the unconditional constant of the
unconditional basis (en)∞n=1. An unconditional basis with unconditional constant 1 is said
to be 1-unconditional. A basis which is not unconditional is called a conditional basis.
A sequence which is an unconditional (respectively, conditional) basis in its closed linear
span is called an unconditional basic sequence (respectively, conditional basic sequence).

Every infinite dimensional Banach space contains a basic sequence, however, not every
infinite dimensional separable Banach space contains a basis. The classical Banach spaces
L1[0, 1] and C[0, 1] contain bases, however they cannot be isomorphically embedded in a
Banach space with an unconditional basis. The standard basis en = (0, . . . , 0︸ ︷︷ ︸

n−1

, 1, 0, 0, . . .)

of the spaces c0 and `p for 1 ≤ p <∞ is 1-unconditional.
We remark that every 1-unconditional basic sequence (en)∞n=1 in a Hilbert space H is

orthogonal, because the inequality ‖en + em‖ = ‖en − em‖ yields

(en, em) =
1

4

(
‖en + em‖ − ‖en − em‖

)
= 0

if n 6= m.
We also need the following statement from [13, Proposition 1.c.7] which is true for

real Banach spaces.

Lemma 1.3. Let (en)∞n=1 be an unconditional basic sequence in a Banach space X with
the unconditional constant M . Let (an)∞n=1 be any sequence of scalars for which the series∑∞
n=1 anen converges. Then for any bounded sequence of scalars (λn)∞n=1 one has∥∥∥ ∞∑

n=1

λnanen

∥∥∥ ≤M sup
n
|λn|

∥∥∥ ∞∑
n=1

anen

∥∥∥.
Furthermore, we need the following finite dimensional version of Lemma 1.3.

Lemma 1.4. Let (xn)Nn=1 be a finite sequence of elements in a real Banach space X.
Then for any collection of scalars (λn)Nn=1 one has∥∥∥ N∑

n=1

λnxn

∥∥∥ ≤ max
n
|λn| max

θn=±1

∥∥∥ N∑
n=1

θnxn

∥∥∥.
Formally Lemma 1.4 does not follow from 1.3, however its proof provided in the

Lindenstrauss-Tzafriri book could be modified to prove Lemma 1.4. Besides, Lemma 1.4
follows from Lemma 2.3 of [15].

1.1.3. Boundedly complete bases. A basis (en)∞n=1 of a Banach space X is called boundedly
complete if for any sequence of scalars (an)∞n=1 the boundedness of the partial sums
supn

∥∥∑n
k=1 akek

∥∥ < ∞ implies the convergence of the series
∑∞
n=1 anen. Every basis

of a reflexive Banach space is boundedly complete [13, Theorem 1.b.5]. The standard
basis of the nonreflexive space `1 is evidently boundedly complete as well. However,
every Banach space with a boundedly complete basis is isomorphic to a conjugate space
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[13, Theorem 1.b.4]. A kind of converse statement is also true: by a deep result of
Johnson, Rosenthal and Zippin [9], if a conjugate Banach space X∗ has a basis then X∗

contains a boundedly complete basis. Finally, an unconditional basis of a Banach space
X is boundedly complete if and only if X contains no subspace isomorphic to c0 [13,
Theorem 1.c.10].

1.2. A characterization of precompactness of sets in a Banach space with a
basis. We provide below a convenient characterization of precompactness in terms of
biorthogonal functionals. Informally speaking, it asserts that the precompactness of a
subset A of a Banach space X is equivalent to the uniform convergence of the Fourier
series of elements of A with respect to a given basis. This statement is not new (see e.g.
[11, 11.2.2]).

Lemma 1.5. Let X be a Banach space with a basis (en)∞n=1 and the biorthogonal func-
tionals (e∗n)∞n=1. A bounded set A ⊂ X is precompact if and only if

(1.1) lim
N→∞

sup
x∈A

∥∥∥∑
n>N

e∗n(x) en

∥∥∥ = 0.

2. Bricks

The notion of entropy is based on the concept of bricks in a Banach space, that is,
a box with sides that are parallel to the coordinate hyperplanes with respect to a given
basis. The latter concept we develop in this section.

2.1. Definition and properties. Let X be a Banach space with a basis B = (en)∞n=1

and biorthogonal functionals e∗k ∈ X∗, and let E = (εn)∞n=1 be a sequence of nonnegative
numbers.

Definition 2.1. A brick (more precisely, the brick corresponding to the pair (B, E)) is
defined to be the following set

KB,E =
{
x ∈ X : (∀n ∈ N) |e∗n(x)| ≤ εn

}
.

The numbers εn are called the half-hight of the brick KB,E .

In other words, KB,E consists of all sums of convergent series x =
∑∞
n=1 anen with

coefficients satisfying |an| ≤ εn for all n.
A simple observation: any brick KB,E coincides with the brick KB′,E′ , where B′ =

(e′n)n∈M is the normalized basis e′n = ‖en‖−1en, n = 1, 2, . . ., and B′ = (e′n)n∈M the half-
height ε′n = εn‖en‖, n = 1, 2, . . .. So, we consider bricks constructed by normalized
bases only.

Definition 2.2. A brick constructed by an unconditional basis, 1-unconditional basis,
or boundedly complete basis is called an unconditional, 1-unconditional or respectively,
a boundedly complete brick.

Recall that a subset A of a linear space X is called absolutely convex provided for all
m ∈ N, x1, . . . , xm ∈ A and λ1, . . . , λm ∈ K the inequality |λ1| + . . . + |λm| ≤ 1 implies
λ1x1 + . . .+ λmxm ∈ A.

Proposition 2.3. Every brick in a Banach space X is an absolutely convex closed subset
of X.

Proof. Let B = (en)∞n=1 be a normalized basis of X with the biorthogonal functionals
e∗k ∈ X∗ and E = (εn)∞n=1. Assume m ∈ N, x1, . . . , xm ∈ KB,E , λ1, . . . , λm ∈ K and
|λ1|+ . . .+ |λm| ≤ 1. Then for every n ∈ N one has

|e∗n(λ1x1 + . . .+ λmxm)| ≤ |λ1||e∗n(x1)|+ . . .+ |λm||e∗n(xm)|
≤ |λ1| εn + . . .+ |λm| εn ≤ εn.
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Thus, KB,E is absolutely convex. By continuity of e∗n’s, KB,E is closed. �

One can deduce from Lemma 1.5 that if KB,E is compact then limn→∞ εn = 0, and
also if

∑∞
n=1 εn <∞, then KB,E is compact. We are not going to provide details because

of a more general characterization of compactness for bricks below (Theorem 3.9).

Definition 2.4. A brick KB,E is said to be solid if for each x ∈ KB,E and each numbers
a1, a2, . . . ∈ K such that |an| ≤ |e∗n(x)| for all n ∈ N the series

∑∞
n=1 anen converges2.

Evidently, if the series
∑∞
n=1 εnen converges unconditionally then the brick KB,E is

solid. In particular, every of the following two conditions is sufficient for KB,E to be solid

(1) KB,E is unconditional;
(2)

∑∞
n=1 εn <∞.

Recall that an element x0 ∈ A of a subset A of a linear space X is called an extreme
point of A if there is no segment of A centered at x0, e.i. for every x ∈ X there exists
λ ∈ [−1, 1] such that x0 +λx /∈ A. The next statement easily follows from the definitions.

Proposition 2.5. Let X be a Banach space with a normalized basis B = (en)∞n=1 and
biorthogonal functionals e∗k ∈ X∗, and let E = (εn)∞n=1. A vector x0 ∈ KB,E is an extreme
point of KB,E if and only if |e∗n(x0)| = εn for all n ∈ N.

It is immediate that if KB,E has an extreme point then limn→∞ εn = 0. As we will
see below, the existence of an extreme point of a brick is unrelated to its boundedness.

Observe that every element x0 ∈ X generates a brick corresponding to a normalized
basis B = (en)∞n=1 of X and the sequence εn = |e∗n(x0)|, an extreme point of which x0 is.

First we show that the existence of an extreme point of a brick does not imply its
boundedness.

Example 2.6. There exists an unbounded brick with en extreme point.

Proof. Let X = c be the space of all converging sequences with the supremum norm.
Consider the summing basis [13, p. 20] en = (0, . . . , 0︸ ︷︷ ︸

n−1

, 1, 1, . . .), and the brick generated

by the element

x0 = e1 −
e2

2
+
e3

3
− . . .+ (−1)n+1en

n
+ . . . ,

which therefore is an extreme point of it (the convergence of the series in c follows from

that of the Leibniz series
∑∞
n=1

(−1)n+1

n ). The unboundedness of the brick KB,E with the

half-height εn = 1
n is guaranteed by the equality∥∥∥e1 +

e2

2
+
e3

3
+ . . .+

en
n

∥∥∥ =

n∑
k=1

1

k

and the divergence of the harmonic series. �

In contrast to this, every unconditional brick with an extreme point is bounded. More-
over, the norm of any extreme point (and hence, of an arbitrary element) is estimated
by the unconditional constant of the basis and the norm of any fixed extreme point.

Proposition 2.7. Let X be a Banach space with a normalized unconditional basis B =
(en)∞n=1 and E = (εn)∞n=1. Let x0 be an extreme point of the brick KB,E . Then KB,E is
bounded by M ‖x0‖, where M is the unconditional constant of B. In particular, if B is
1-unconditional then ‖x‖ ≤ ‖x0‖ for every x ∈ KB,E .

2and hence, its sum belongs to KB,E
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Proposition 2.7 follows from Lemma 1.3.
Now we show that the boundedness of a brick does not imply the existence of an

extreme point, even of a 1-unconditional brick.

Example 2.8. There exists a bounded 1-unconditional brick without an extreme point.

Proof. Such a brick, for example, is the closed unit ball of the space c0. Indeed, consider
the 1-unconditional standard basis of c0 and take εn = 1, n = 1, 2, . . .. Then the absence
of extreme points is obvious. �

Proposition 2.9. Every bounded boundedly complete brick contains an extreme point.

Proof. Let X be a Banach space with a normalized boundedly complete basis B =
(en)∞n=1 and biorthogonal functionals e∗k ∈ X∗, and let E = (εn)∞n=1. Assume ‖x‖ ≤
L for all x ∈ KB,E and some number L. Observe that for an = εn the condition∥∥∑n

k=1 akek
∥∥ ≤ L holds for every n ∈ N, because

∑n
k=1 akek ∈ KB,E . Since the basis is

boundedly complete, the series x0 =
∑∞
n=1 εnen converges, and hence there is an extreme

point x0. �

3. Radii and a compactness characterization for bricks

By the radius r(A) of a bounded subset of a Banach space we mean the number
r(A) = sup

x∈A
‖x‖.

We consider two more radii of a brick: the extreme radius and the unconditional
radius. In the case where the unconditional radius of a brick is finite all three radii
coincide. Moreover, in this case (and only in this case) the brick is compact. If an
extreme radius is finite then it equals the radius.

Definition 3.1. Let X be a Banach space with a normalized basis B = (en)∞n=1, and let
E = (εn)∞n=1. The extreme radius rext(KB,E) and the unconditional radius runc(KB,E) of
the brick KB,E is defined to be either a number or a symbol∞ by (1) and (2) respectively.

(1) rext(KB,E) = sup
{
‖x0‖ : x0 is an extreme point of KB,E

}
, if an extreme point ex-

ists, and rext(KB,E) =∞ otherwise.

(2) runc(KB,E) = sup
θn=±1

∥∥∥ ∞∑
n=1

θnεnen

∥∥∥ (the norm of a divergent series is ∞).

The difference between the defined radii could be demonstrated using Example 2.8
where as a brick we take the closed unit ball Bc0 of the space c0. By the definitions,
r(Bc0) = 1, however rext(Bc0) = runc(Bc0) = ∞. Below we construct a brick KB,E
(Example 3.4), for which rext(KB,E) = r(KB,E) < ∞, however runc(Bc0) = ∞. On the
other hand, Example 2.6 may mislead the reader by hinting that a brick with a finite
extreme radius need not be bounded. Actually, we have the following statement on the
connection between the radii.

3.1. The connection between radii.

Theorem 3.2. For an arbitrary brick KB,E in a Banach space X the following assertions
hold.

(1) rext(KB,E) ≤ runc(KB,E).
(2) If rext(KB,E) <∞ then rext(KB,E) = r(KB,E).
(3) If runc(KB,E) <∞ then rext(KB,E) = runc(KB,E) = r(KB,E).

Proof. Item (1) follows immediately from the definitions.
(2) Assume rext(KB,E) <∞. By the definitions, rext(KB,E) ≤ r(KB,E). The inequality

r(KB,E) ≤ rext(KB,E) is quite thin; its proof we present separately (see Lemma 3.3 below).
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(3) Assume runc(KB,E) < ∞. The equality rext(KB,E) = runc(KB,E) follows from the
definitions as well, and the equality r(KB,E) = rext(KB,E) follows from item (2). �

Lemma 3.3. If rext(KB,E) <∞ then the brick KB,E is bounded by rext(KB,E).

Proof. First we prove that for every n0 ∈ N and every ε > 0 there is N ≥ n0 such that
for all signs θ1, . . . , θN ∈ {−1, 1} one has

(3.1)
∥∥∥ N∑
n=1

θnεnen

∥∥∥ < rext(KB,E) + ε.

Indeed, fix any extreme point x0 =
∑∞
n=1 αnen of KB,E , |αn| = εn, n = 1, 2, . . . (an

extreme point exists because rext(KB,E) <∞). Choose N ≥ n0 so that

(3.2)
∥∥∥∑
n>N

αnen

∥∥∥ < ε.

Let θ1, . . . , θN ∈ {−1, 1} be any signs. Observe that

x =

N∑
n=1

θnεnen +
∑
n>N

αnen

is an extreme point of KB,E , hence ‖x‖ ≤ rext(KB,E). Taking into account (3.2), we
obtain ∥∥∥ N∑

n=1

θnεnen

∥∥∥ ≤ ‖x‖+
∥∥∥∑
n>N

αnen

∥∥∥ < rext(KB,E) + ε.

Thus, (3.1) is proved.
Let x̂ ∈ KB,E be any element. Show that ‖x̂‖ ≤ rext(KB,E). Fix any ε > 0 and pick

n0 ∈ N so that for each m ≥ n0

(3.3)
∥∥∥∑
n>m

e∗n(x̂) en

∥∥∥ < ε.

Then by the above, choose N ≥ n0 so that for all signs θ1, . . . , θN ∈ {−1, 1} one has
(3.1). Then

‖x̂‖ =
∥∥∥ ∞∑
n=1

e∗n(x̂) en

∥∥∥ (3.3)

≤
∥∥∥ N∑
n=1

e∗n(x̂) en

∥∥∥+ ε

Lemma 1.4

≤ max
θn=±1

∥∥∥ N∑
n=1

θnεnen

∥∥∥+ ε
(3.1)

< rext(KB,E) + 2ε.

By the arbitrariness of ε > 0, ‖x̂‖ ≤ rext(KB,E). Thus, KB,E is bounded by rext(KB,E).
�

3.2. Bricks with finite extreme radius. In this subsection we study the question of
the compactness of a brick with finite extreme radius.

Example 3.4. There exists a noncompact brick in c0 of finite extreme radius.

Proof. This example is a modification of Example 2.6. We choose integers 0 = n0,
2 = n1 < n2 < . . . such that

(3.4)
1

nk−1 + 1
+ . . .+

1

nk
∈ [1, 2], k = 1, 2, . . . .

Then for X = c0 we define a basis B = (fn)∞n=1 by

f1 = (1, 1, 0, 0, . . .),

f2 = (0, 1, 0, 0, . . .),
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f3 = (0, 0, 1, 1, . . . , 1, 1︸ ︷︷ ︸
n2−n1

, 0, 0, . . .),

f4 = (0, 0, 0, 1, . . . , 1, 1︸ ︷︷ ︸
n2−n1

, 0, 0, . . .),

. . .

fn2
= (0, 0, 0, 0, . . . , 0, 1︸ ︷︷ ︸

n2−n1

, 0, 0, . . .),

fn2+1 = (0, 0, . . . , 0︸ ︷︷ ︸
n2

, 1, 1, . . . , 1, 1︸ ︷︷ ︸
n3−n2

, 0, 0, . . .),

. . . .

Using standard arguments, one can prove that the above system B = (fn)∞n=1 is a basis
of c0. More precisely, first we need to prove the inequality

∥∥∑n
k=1 akfk

∥∥ ≤ ∥∥∑m
k=1 akfk

∥∥
for all n < m and any collection of scalars (ak)mk=1. Then we prove that the linear span
of (fn)∞n=1 is dense in c0 (because the standard basis of c0 is contained in that linear
span). We omit the details which are straightforward.

Then we define half-height by εn = 1
n , n = 1, 2, . . ., set E = (εn)∞n=1 and prove that

the brick KB,E is as desired. First we show that KB,E contains an extreme point. Indeed,

the series f0 =
∑∞
n=1(−1)n+1εnfn converges in c0, because the series

∑∞
n=1

(−1)n+1

n
converges, and hence, possesses the Cauchy condition. By (3.4) we obtain that the brick
is norm bounded by 2, hence, rext(KB,E) ≤ 2. The noncompactness of KB,E follows from
Lemma 1.5 and the fact that the sequence

gk =
1

nk−1 + 1
fnk−1+1 + . . .+

1

nk
fnk

, k = 1, 2, . . . .

satisfies gk ∈ KB,E and ‖gk‖ ≥ 1 by (3.4). �

Now we show that in most natural cases (unconditional or boundedly complete basis)
a brick of finite extreme radius is compact.

Theorem 3.5. Every unconditional or boundedly complete brick of finite extreme radius
is compact.

For the proof we need the following lemma which is also be used later.

Lemma 3.6. Let X be a Banach space with a normalized basis B = (en)∞n=1, and let
E = (εn)∞n=1 be a sequence of nonnegative real numbers such that the brick KB,E is not
compact. Then there are δ > 0 and a block basis (uk)∞k=1 of B such that uk ∈ KB,E and
‖uk‖ ≥ δ for k = 1, 2, . . ..

Proof. By Proposition 2.3, KB,E is not precompact and by Lemma 1.5, (1.1) does not
hold for A = KB,E . Let e∗k ∈ X∗ be the biorthogonal functionals. Choose δ > 0 and a
sequence xNk

∈ KB,E so that N1 < N2 < . . ., ‖xNk
‖ ≥ 2δ and e∗n(xNk

) = 0 as n ≤ Nk,
that is, xNk

=
∑
n>Nk

e∗n(xNk
) en for k = 1, 2, . . .. Set n1 = 0 and choose n2 > n1 so

that ∥∥∥∑
n>n2

e∗n(xN1) en

∥∥∥ < δ.

Then for u1 =
∑n2

n=1 e
∗
n(xN1

) en one gets that u1 ∈ KB,E and

‖u1‖ ≥
∥∥ ∞∑
n=1

e∗n(xN1
) en −

∑
n>n2

e∗n(xN1
) en

∥∥∥ ≥ 2δ − δ = δ.
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At the second step we choose j2 > j1 = 1 so that Nj2 > n2. Thus,

xNj2
=
∑
n>Nj2

e∗n(xNj2
) en =

∑
n>n2

e∗n(xNj2
) en.

Choose n3 > n2 so that ∥∥∥∑
n>n3

e∗n(xNj2
) en

∥∥∥ < δ.

Then for u2 =
∑n3

n=n2+1 e
∗
n(xNj2

) en we obtain that u2 ∈ KB,E and

‖u2‖ ≥
∥∥ ∞∑
n=n2+1

e∗n(xNj2
) en −

∑
n>n3

e∗n(xNj2
) en

∥∥∥ ≥ 2δ − δ = δ.

Proceeding like that step by step, we construct the desired block basis (uk)∞k=1. �

Proof of Theorem 3.5. Let X be a Banach space with a normalized unconditional or
boundedly complete basis B = (en)∞n=1 and biorthogonal functionals e∗k ∈ X∗, and let
E = (εn)∞n=1. Assume rext(KB,E) <∞, and show that for A = KB,E we have (1.1).

The case where B is unconditional. Let M be the unconditional constant of B and
x0 any extreme point of A (an extreme point exists, because rext(KB,E) <∞). Fix any
ε > 0 and choose n0 ∈ N so that for every N ≥ n0 one has

∥∥∑
n>N e

∗
n(x0) en

∥∥ < M−1ε.
Then for each x ∈ KB,E and each N ≥ n0, taking into account |e∗n(x)| ≤ εn = |e∗n(x0)|
and Lemma 1.3, we obtain∥∥∥∑

n>N

e∗n(x) en

∥∥∥ ≤M∥∥∥∑
n>N

e∗n(x0) en

∥∥∥ < ε.

The case where B is boundedly complete. Assume (1.1) is false. by Lemma 1.5, the
brick KB,E is not compact. Using Lemma 3.6, we choose δ > 0 and a block basis
uk =

∑nk+1

j=nk+1 ajej of B such that uk ∈ KB,E and ‖uk‖ ≥ δ for k = 1, 2, . . ., where 0 =

n1 < n2 < . . .. Since Sn =
∑n
i=1 aiei ∈ KB,E for all n ∈ N, we get ‖Sn‖ ≤ rext(KB,E) by

(2) of Theorem 3.2. Since the basis (en)∞n=1 is boundedly complete, the series
∑∞
n=1 anen

converges. However, this is impossible, because the Cauchy condition for its convergence
contradicts the inequalities ‖uk‖ ≥ δ, k = 1, 2, . . .. So, (1.1) is valid.

Thus, (1.1) holds anyway. By Lemma 1.5, the brick KB,E is precompact. By Propo-
sition 2.3, KB,E is compact. �

The following theorem shows that examples like 3.4 are possible for Banach spaces
containing an isomorph of c0 only.

Theorem 3.7. For a Banach space with a Schauder basis the following assertions are
equivalent.

(1) X contains a noncompact brick with finite extreme radius.
(2) X contains a subspace isomorphic to c0.

Proof. (1) ⇒ (2). Let B = (en)∞n=1 be a normalized basis, E = (εn)∞n=1 a sequence of
nonnegative real numbers such that the brick KB,E is noncompact and has finite extreme
radius. By (2) of Theorem 3.2, r(KB,E) <∞. Choose by Lemma 3.6 δ > 0 and a block
basis (uk)∞k=1 of B such that uk ∈ KB,E and ‖uk‖ ≥ δ for k = 1, 2, . . ..

Now we show that the sequence (uk) is equivalent to the unit vector basis of c0. Let
(ak)nk=1 be any scalars with α = maxk |ak| > 0. On the one hand, since

∑n
k=1 α

−1akuk ∈
KB,E , we obtain ∥∥∥ n∑

k=1

akuk

∥∥∥ = α
∥∥∥ n∑
k=1

α−1akuk

∥∥∥ ≤ α · r(KB,E).
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On the other hand, for j ∈ {1, . . . , n}, so that |aj | = α the well known estimate

|aj | ≤ 2K
∥∥∥∑n

k=1 akuk

∥∥∥, where K is the basis constant of (uk)∞k=1, see [13, p. 7], im-

plies
∥∥∥∑n

k=1 akuk

∥∥∥ ≥ (2K)−1α.

(2) ⇒ (1). By Sobczyk’s theorem [13, Theorem 2.f.5], a subspace X1 of X which is
isomorphic to c0 is complemented in X, that is, X = Y ⊕X1 for some subspace Y of X.
Hence, X is isomorphic to X ⊕ c03, because

X ' Y ⊕ c0 ' Y ⊕ (c0 ⊕ c0) ' (Y ⊕ c0)⊕ c0 ' X ⊕ c0,
where E ' F means that E is isomorphic to F . Observe that, if (en)∞n=1 and (fn)∞n=1

are Schauder bases of E and F respectively then the mixed system

gn =

{
(ek, 0), if n = 2k − 1,
(0, fk), if n = 2k

is a Schauder basis in the direct sum X ⊕ c0. So, since X has a basis, due to the
isomorphism X ' X⊕c0, X has a basis B = (en)∞n=1 such that the subsequence (e2k)nk=1

is equivalent to the unit vector basis of c0. Using this subsequence and Example 3.4, one
can construct a noncompact brick in X with finite extreme radius. �

3.3. A compactness characterization for bricks. In this subsection we characterize
compactness for bricks, partially in terms of the following notion.

Definition 3.8. Let X be a Banach space with a normalized basis B = (en)∞n=1 and
biorthogonal functionals e∗k ∈ X∗, and let E = (εn)∞n=1. The brick KB,E is called holistic if
for any sequence of scalars (an)∞n=1 such that |an| ≤ εn for all n ∈ N the series

∑∞
n=1 anen

converges.

In other words, a holistic brick is a solid brick with an extreme point (cf. Defini-
tion 2.4).

The following result is important for the concept of entropy.

Theorem 3.9 (A compactness test for bricks). Let X be a Banach space with a nor-
malized basis B = (en)∞n=1, and let E = (εn)∞n=1. Then the following assertions are
equivalent.

(1) The brick KB,E is compact.
(2) The brick KB,E is holistic.
(3) The series

∑∞
n=1 εnen converges unconditionally.

(4) runc(KB,E) <∞.
(5) KB,E is homeomorphic to the Tikhonov cube [−1, 1]ω

Proof. The equivalence (2) ⇔ (3) follows from Lemma 1.2.
(1) ⇒ (2). Let (an)∞n=1 be a sequence of scalars such that |an| ≤ εn for all n ∈

N. Set xN =
∑N
n=1 anen and show that the series

∑∞
n=1 anen converges. Assume, on

the contrary, that this is false. Then the series does not meet the Cauchy condition,
and hence, there are δ > 0, sequences of integers 1 = n0 < n1 < . . . and (`k)∞k=1

such that `k ≤ nk+1 − nk and ‖uk‖ ≥ δ for k = 1, 2, . . ., where uk =
∑nk+`k
j=nk+1 ajej .

Observe that uk ∈ KB,E for all k. Denote by K the basis constant of B and prove that
‖uk − um‖ ≥ δ/K for all k < m, which contradicts the compactness of KB,E . Indeed,
δ ≤ ‖uk‖ ≤ K‖uk − um‖.

(2) ⇒ (1). We prove that

(3.5) lim
N→∞

sup
|an|≤εn

∥∥∥∑
n>N

anen

∥∥∥ = 0.

3we do not care what norm one considers on the direct sum X ⊕ c0, because all the norms are
equivalent and the corresponding Banach spaces are isomorphic
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Indeed, if this were false, we would choose δ > 0, a sequence of numbers 0 = n0 <
n1 < . . . and a sequence (an)∞n=1, |an| ≤ εn so that∥∥∥ nk∑

j=nk−1+1

ajej

∥∥∥ ≥ δ,
which contradicts the Cauchy condition for

∑∞
n=1 anen. Thus, (3.5) is proved. By

Lemma 1.5, the brick KB,E is precompact, and then by Proposition 2.3 is compact.
It is left to show the equivalence of (4) to the other conditions. Indeed, the implication

(4) ⇒ (3) is obvious. On the other hand, (2) together with (1) implies (4).
(1) ⇔ (5). By Tikhonov’s theorem, T is compact. Thus, KB,E is compact when-

ever it is homeomorphic to T . Conversely, if KB,E is compact then the map F (x) =(
ε−1

1 e∗1(x), ε−1
2 e∗2(x), . . .

)
is a homeomorphism of KB,E onto T (the continuity of T−1

follows from Lemma 1.5). �

Remark that one can provide a topological proof of the implication (1)⇒ (2). Indeed,
the functionF from KB,E to the cube TE = [−ε1, ε1] × [−ε2, ε2] × . . . endowed with
the Tikhonov topology, defined by F (x) =

(
e∗1(x), e∗2(x), . . .

)
, is continuous. Then the

image F (KB,E) is compact in TE . Since any point y = (η1, η2, . . .) ∈ TE is the limit of
yn = (η1, . . . , ηn, 0, 0, . . .) ∈ F (KB,E), we obtain that y ∈ F (KB,E). So, the brick KB,E is
holistic.

As a consequence of theorems 3.2 and 3.9 we get the following result.

Corollary 3.10. All the radii of any compact brick KB,E are finite and coincide. More-
over, all of them equal the norm ‖x0‖ of some extreme point x0 of KB,E .

The second statement of Corollary 3.10 follows from (3) of Theorem 3.2 and the
general well known fact that a continuous real valued function on a compact set attains
its maximum.

The implication (3) ⇒ (1) of Theorem 3.9 gives the following Gelfand theorem [10,
Theorem 1.3.4].

Corollary 3.11 (Gelfand’s theorem). If a series
∑∞
n=1 xn of elements of a Banach space

X unconditionally converges then the set of all sums
∑∞
n=1 θnxn, θn = ±1 is compact.

Remark also that by the compactness of the closed convex hull of a compact set [5,
p. 364], the implication (3) ⇒ (1) one can deduce from the above Gelfand theorem.

4. Geometric entropy

The geometric entropy of a set A is going to be the infimum of the radii of compact
bricks containing A. Depending on a type of bricks, we get different types of geometric
entropy.

Definition 4.1. Let X be a Banach space. The geometric entropy and the unconditional
entropy of a subset A ⊆ X is a number or the symbol ∞, defined, respectively, by

(1) E(A) = inf
A⊆KB,E

r(KB,E) (the infimum is taken over all compact bricks KB,E in

X);
(2) E0(A) = inf

A⊆KB,E
r(KB,E) (the infimum is taken over all 1-unconditional compact

bricks KB,E in X).

In the case where no compact brick (of the corresponding type) contains A, we set the
corresponding entropy to be equal ∞. In particular, if X has no basis then there is no
brick in X, and hence all subsets of X has infinite geometric entropy.
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4.1. Common properties. The following statements collect simple properties of the
entropies.

Proposition 4.2. Let X be a Banach space. Then

(1) for any A ⊆ X and λ > 0 one has E(λA) = λE(A) and E0(λA) = λE0(A);
(2) if A ⊆ B ⊆ X then E(A) ≤ E(B) and E0(A) ≤ E0(B);
(3) if A ⊆ X then E0(A) ≥ E(A) ≥ r(A);
(4) if KB,E is a compact brick then E(KB,E) = r(KB,E);
(5) if KB,E is a 1-unconditional compact brick then E0(KB,E) = r(KB,E).

The proof is obvious.
Given a subset A of a Banach space X, by absconv (A) we denote the closure of an

absolute convex hull of A, which by definition equals the least closed absolute convex set
in X containing A. The next assertion follows from Proposition 2.3.

Proposition 4.3. For any subset A of a Banach space X one has E
(
absconv (A)

)
=

E(A) and E0

(
absconv (A)

)
= E0(A).

4.2. Sudakov’s characteristic. Following Sudakov [18] and generalizing his notions
introduced for an orthonormal basis of a Hilbert space to a normalized basis of a Banach
space, we give some definitions.

Let X be a Banach space with a normalized basis B = (en)∞n=1 and the biorthogonal
functionals (e∗n)∞n=1.

Definition 4.4. The clearances of a subset A ⊂ X relatively to the basis B are set to
be the sequence γB,n(A) ∈ [0,+∞] defined by

(4.1) γB,n(A) = sup
x∈A
|e∗n(x)|, n = 1, 2, . . . .

The following simple observation will be used to study of operator images of the closed
unit ball.

Lemma 4.5. Let X be a Banach space with a normalized basis B = (en)∞n=1 and biorthog-
onal functionals (e∗n)∞n=1. Let T ∈ L(X). Then the clearances of the image T (BX) of the
closed unit ball of X relatively to the basis B are evaluated by γB,n

(
T (BX)

)
= ‖T ∗e∗n‖,

n ∈ N.

Proof. Indeed, for each n ∈ N one has

γB,n
(
T (BX)

)
= sup
x∈BX

|e∗n(Tx)| = sup
x∈BX

|(T ∗e∗n)(x)| = ‖T ∗e∗n‖.

�

Definition 4.6. The radius of a subset A ⊂ X relatively to the basis B is the number
or the symbol rB(A) ∈ [0,+∞] defined by

(4.2) rB(A) = sup
θn=±1

∥∥∥ ∞∑
n=1

θnγB,n(A) en

∥∥∥
(here the norm of a divergent series is set to be ∞).

This latter radius of a set generalizes the unconditional radius of a brick. Indeed, if
KB,E is a brick in a Banach space X constructed by a basis B = (en)∞n=1 with biorthogonal
functionals e∗k ∈ X∗ and half-height E = (εn)∞n=1 then γB,n(KB,E) = εn for all n ∈ N, and
hence, rB(KB,E) = runc(KB,E). Thus, Theorem 3.9 and item (3) of Theorem 3.2 imply
that if KB,E is a compact brick then rB(KB,E) = r(KB,E).

In [18] the author used the sum of the series
∑∞
n=1 γ

2
B,n(A) instead of the radius

of A introduced above, which corresponds to the square of the radius for the case of an
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orthonormal basis of a Hilbert space. Very likely, that in such cases the square root of the
sum is not taken just for aesthetic reasons, however it is much more natural to consider
the norm of an element as a characteristic of something than the square of the norm.
Another observation is that, for an orthonormal basis of a Hilbert space (more generally,
for a 1-unconditional basis of a Banach space in the real case) the norm of the sum that
appears in the definition of the radius does not depend on the signs θn, and hence one
may replace the right-hand side of (4.2) with the expression

∥∥∑∞
n=1 γB,n(A) en

∥∥.
Remark that the radius of a set rB(A) does depend on the basis B. Moreover, in [7]

the first named author provided an example of a set in a separable Hilbert space the
radius of which relatively to a certain basis is finite, and infinite relatively to another
one.

The Sudakov characteristic of a subset A of a Banach space X with a basis is the
number or symbol s(A) ∈ [0,∞], defined by

s(A) = sup
B
rB(A),

where the supremum is taken over all normalized bases B of X.
The following statement shows that the geometric entropy of a set can be defined as

the Sudakov characteristic, but replacing sup with inf.

Proposition 4.7. For any subset A of a Banach space X the following equalities hold

(1) E(A) = inf
B
rB(A) (here the infimum is taken over all normalized bases B of X);

(2) E0(A) = inf
{
rB(A) : B is a 1-unconditional basis of X

}
.

Proof. We prove (1) only; item (2) is proved similarly. We prove (1) under the assump-
tion that the set of compact bricks containing A is nonempty (otherwise both sides of
the equality equal ∞). So, let B = (en)∞n=1 be any normalized basis of X with the

biorthogonal functionals (e∗n)∞n=1, A ⊆ X any subset. Set ΓB = ΓB(A) =
(
γB,n(A)

)∞
n=1

,

where γB,n(A) are the clearances of A relatively to B, defined by (4.1). By (4.2) and
Definition 3.1 (2), rB(A) = r(KB,ΓB). Hence, taking into account that A ⊆ KB,ΓB , we
obtain

E(A) = inf
A⊆KB,E

r(KB,E) ≤ inf
B
r(KB,ΓB) = inf

B
rB(A).

In order to prove the other side inequality, we fix any normalized basis B0 of X, and
denote by ΓB0 the clearances of A relatively to B0. Since A ⊆ KB0,ΓB0

, one has

inf
B
rB(A) ≤ rB0(A) ≤ rB0(KB0,ΓB0

) = r(KB0,ΓB0
).

By arbitrariness of B0, we get

inf
B
rB(A) ≤ inf

A⊆KB,ΓB
r(KB,ΓB).

It remains to observe that, if A ⊆ KB,E then A ⊆ KB,ΓB ⊆ KB,E , and therefore,

inf
A⊆KB,ΓB

r(KB,ΓB) = inf
A⊆KB,E

r(KB,E) = E(A).

�

4.3. Is the geometric entropy of every precompact set finite? Equivalently, is
every precompact set in a Banach space X contained in a compact brick? We know very
little concerning this question. By Proposition 4.8, the answer is affirmative if X embeds
isomorphically in c0. We also know that the answer is negative for the unconditional
entropy if X is isomorphic to a Hilbert space (see Corollary 5.2 and Example 5.4).

Proposition 4.8. Every precompact subset A of the Banach space c0 has finite geometric
entropy. Moreover,

E(A) = E0(A) = r(A).
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Proof. Let A be a precompact subset of c0. Let εn = γn(A) = supx∈A |e∗n(x)|, n = 1, 2, . . .
be the clearances of A with respect to the standard basis B = (en)∞n=1 of c0. One can
easily deduce from Lemma 1.5 that limn→∞ εn = 0. Hence, the series x0 =

∑∞
n=1 εnen

unconditionally converges in c0. By Theorem 3.9, the brick KB,E is compact, where
E = (εn)∞n=1. By the definition of εn’s, A ⊆ KB,E , and therefore A has finite geometric
entropy. Thus, E0(A) ≤ r(KB,E) = ‖x0‖, because∥∥∥ ∞∑

n=1

θnεnen

∥∥∥ = max
n

εn = ‖x0‖ = εn0

for some n0 ∈ N. By the definition of εn0 , for any ε > 0 there is x ∈ A with |e∗n0
(x)| ≥

εn0 − ε. In particular, ‖x‖ ≥ ‖x0‖ − ε. By arbitrariness of ε, ‖x0‖ ≤ r(A). So,
E0(A) ≤ r(A). By (3) of Proposition 4.2, the proof is completed. �

5. Geometric entropy in a Hilbert space

Let H be a separable infinite dimensional Hilbert space. By the observation made just
before Lemma 1.3, a sequence in a separable Hilbert space is a 1-unconditional normalized
basis if and only if it is an orthonormal basis. So, one may replace 1-unconditional
normalized bases with orthonormal bases in the definition of the unconditional entropy
E0(A) of a set A ⊆ H. For the same reason, a 1-unconditional brick in a Hilbert space
we called a rectangular brick.

In this section we construct different classes of compact sets having infinite uncon-
ditional entropy, and provide a sufficient condition on a precompact set to have finite
unconditional entropy. We also show that the unconditional entropy in a Hilbert space
is different from the geometric entropy by constructing a corresponding example.

5.1. The ranges of Hilbert-Schmidt operators. Recall that an operator T ∈ L(H) is
called a Hilbert-Schmidt operator if ‖T‖2HS =

∑∞
n=1 ‖Ten‖2 <∞ for some (equivalently,

every) orthonormal basis (en)∞n=1 of H. It is known that the number ‖T‖HS does not
depend on the basis (en)∞n=1, and is called the Hilbert-Schmidt norm of T . If T is a
Hilbert-Schmidt operator then so is the conjugate operator T ∗ and ‖T ∗‖HS = ‖T‖HS .
On Hilbert-Schmidt operators, see [2].

By an ellipsoid in a Hilbert space H we mean the image T (BH) of the closed unit
ball BH of H under a Hilbert-Schmidt operator T ∈ L(H). The following theorem
characterizes Hilbert-Schmidt operators in terms of unconditional entropy, and gives a
formula for evaluating the unconditional entropy of ellipsoids.

Theorem 5.1. Let T ∈ L(H) be a linear bounded operator. Then the image T (BH) of
the closed unit ball BH of H under T has finite unconditional entropy if and only if T is
a Hilbert-Schmidt operator. Moreover, E0

(
T (BH)

)
= ‖T‖HS.

Proof. Let B = (en)∞n=1 be any orthonormal basis of H. Then for any choice of signs
θn = ±1 we obtain∥∥∥ ∞∑

n=1

θnγB,n
(
T (BH)

)
en

∥∥∥2

=

∞∑
n=1

γ2
B,n
(
T (BH)

)
by Lemma 4.5

=

∞∑
n=1

‖T ∗en‖2 = ‖T ∗‖2HS = ‖T‖2HS .

Thus, rB
(
T (BH)

)
= ‖T‖HS . By arbitrariness of the basis (en)∞n=1 and Proposition 4.7,

E0

(
T (BH)

)
= ‖T‖HS . �

As a consequence of Theorem 5.1, we obtain a class of examples of compact sets with
infinite unconditional entropy.
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Corollary 5.2. If T ∈ L(H) is a compact operator on a Hilbert space H which is not
a Hilbert-Schmidt operator then the image T (BH) of the unit ball of H under T is a
precompact set with infinite unconditional entropy.

Using Theorem 5.1, we easily evaluate the unconditional entropy of the unit ball of a
finite dimensional subspace of a Hilbert space.

Proposition 5.3. Let BX denote the closed unit ball of a finite dimensional subspace X
of H. Then E0(BX) =

√
dimX.

Proof. For convenience, we choose an orthonormal basis (en)∞n=1 of H such that X =
[en]Nn=1, where N = dimX. Denote by P the orthogonal projection of H onto X. Then
by Theorem 5.1,

E2
0(BX) =

∞∑
n=1

‖Pen‖2 =

N∑
n=1

‖en‖ = N.

�

Using Proposition 5.3, we construct another class of examples of compact sets in H
with infinite unconditional entropy.

Example 5.4. There exists a precompact set in H with infinite unconditional entropy.

Proof. Let (mn)∞n=1 be a sequence of integers and (δn)∞n=1 a sequence of positive reals
satisfying δn → 0 and δn

√
mn → ∞ as n → ∞. For each n ∈ N choose a subspace Xn

of H of dimension mn and set A =
⋃∞
n=1 δnBXn

. Then by propositions 5.3 and 4.2, for
each n ∈ N one has

E0(A) ≥ E0(δnBXn
) = δnE0(BXn

) = δn
√
mn,

and so, E0(A) = ∞ by arbitrariness on n and the condition δn
√
mn → ∞ as n → ∞.

The condition δn → 0 as n→∞ guarantees the compactness of A. �

5.2. Sufficient conditions on a set to have finite unconditional entropy. Fol-
lowing [6], for a precompact set A of H and a number ε > 0 we consider the covering
number of A by closed balls of radius ε, defined as follows

N(A, ε) = min
{
N ∈ N : (∃{x1, . . . , xN} ⊆ H)(A ⊆

N⋃
k=1

B(xk, ε)
}
.

Theorem 5.5. Let K ⊆ H be a compact set. If there is δ > 0 such that

(5.1)

∫ δ

0

(
lnN(K, ε)

)1/2
dε <∞

then E0(K) <∞.

Proof. Consider a white noise ξ in H is the sense of [16], that is, a family of joint Gaussian
random variables

{
〈u, ξ〉 : u ∈ H

}
such that for all u, v ∈ H and α, β ∈ R we have

(1) E〈u, ξ〉 = 0;
(2) E〈u, ξ〉2 = ‖u‖2;
(3) 〈αu+ βv, ξ〉 = α〈u, ξ〉+ β〈v, ξ〉.

Given ω ∈ K, we set η(ω) = 〈ω, ξ〉. Then η is a Gaussian random process defined on
the compact set K such that for all ω1, ω2 ∈ K one has

(5.2) E
(
η(ω1)− η(ω2)

)2
= ‖ω1 − ω2‖2.

Then by [14, Theorem 6.1.2] and (5.1), there exists a continuous modification of the
process η. So, η can be considered as a Gaussian random element in C(K) of mean zero.
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By the Kwapień-Szymanski theorem [19, Theorem 5.7], η admits a representation of the
form

η(ω) =

∞∑
k=1

ηkfk(ω),

where (ηk)∞k=1 are standard Gaussian random variables which are limits of linear combi-
nations of values of η, and fk, k = 1, 2, . . . are elements of C(K) such that

(5.3)

∞∑
k=1

‖fk‖2 <∞

(here ‖f‖ = supω∈K |f(ω)| for f ∈ C(K)). The random variables (ηk)∞k=1 correspond to
some sequence (ek)∞k=1 in H such that ηk = 〈ek, ξ〉, k = 1, 2, . . ., which is an orthonormal
sequence by (1) and (2). Then for each ω ∈ K we have

η(ω) = 〈ω, ξ〉 =

∞∑
k=1

〈ek, ξ〉fk(ω)
by (3) and (5.3)

=
〈 ∞∑
k=1

fk(ω) ek, ξ
〉

= η
( ∞∑
k=1

fk(ω) ek

)
.

Then by (5.2), for each ω ∈ K we obtain ω =
∑∞
k=1 fk(ω) ek.

Assume B = (en)∞n=1 is a complete system in H, and hence, an orthonormal basis.
For each n ∈ N we set εn = supω∈K |(ω, en)|, E = (εn)∞n=1 and observe that

γB,n(K) = εn = sup
ω∈K
|fn(ω)| ≤ ‖fn‖

for all n, hence, K ⊆ KB,E , and KB,E is a compact brick by (5.3).
It remains to say that, if [en]∞n=1 6= H, then instead of B we consider an orthonormal

basis B′ = (e′n)∞n=1 containing B as a subsequence, and a sequence E ′ = (ε′n)∞n=1 instead
of E , containing E as a subsequence at the same indices as B′ contains B, and ε′n = 0 at
the rest of the indices n. �

5.3. A set in a Hilbert space with distinct geometric and unconditional en-
tropies. Remind that E(A) ≤ E0(A) for any subset A ⊆ H (see item (3) of Proposi-
tion 4.2).

Does there exist a subset A ⊆ H with E(A) < E0(A)? In other words, does
there exist a compact brick K in H and a number δ > 0 such that for every compact
rectangular brick KB,E in H containing K one has r(KB,E) ≥ r(K) + δ? A simple
geometrical argument shows that this is impossible if K is a 2-dimensional brick, that is,
if εn = 0 for n ≥ 3. Indeed, any parallelogram in a plane centered at zero is obviously
contained in a rectangle with the same radius. However, there exists a 3-dimensional
brick which is not contained in a rectangular brick of a close radius.

To make the notation simpler, we introduce some new and very natural terminology.
Given a finite linearly independent system U = (uk)nk=1 in a Hilbert space H, we say
that the set

PU =
{ n∑
k=1

akuk : (∀k) |ak| ≤ 1
}

is an (n-dimensional) oblique parallelepiped. The radius r(PU ) of an oblique parallelepiped
PU is defined by r(PU ) = maxx∈PU ‖x‖. To each oblique parallelepiped PU in an infinite
dimensional separable Hilbert space H with U = (uk)nk=1 there naturally corresponds
a brick KB,E , where B = (ek)∞k=1, ek = uk/‖uk‖ for k = 1, . . . , n and (ek)k>n is any
extension of (ek)nk=1 to a Schauder basis in H and E = (εk)∞k=1 are the numbers defined
by εk = ‖uk‖ for k = 1, . . . , n and εk = 0 for k > n. It is immediate that PU = KB,E .

Theorem 5.6. For every ε > 0 there exists a set K in `2 such that E(K) = 1 and

E0(K) >
√

2− ε.
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Proof. Let n ≥ 3. For convenience of the calculations, we define an n-dimensional oblique
parallelepiped PUn with Un = (uk)nk=1 in `2 by a system which is linearly dependent (more
precisely, of rank n − 1). Of course, this is not acceptable for our purpose, however in
this case all the parameters are easily found. Then one should somewhat perturb the
system by adding to, say, un a vector to make the system linearly independent, however
of small norm, not to spoil the needed estimates too much.

So, we set

u1 = (n− 1, −1 , −1 , . . . , −1︸ ︷︷ ︸
n−1

, 0, 0, . . .);

u2 = ( −1 , n− 1, −1 , . . . , −1︸ ︷︷ ︸
n−2

, 0, 0, . . .);

. . . ;
un = ( −1 , . . . , −1 , −1︸ ︷︷ ︸

n−1

, n− 1, 0, 0, . . .).

Direct simple calculations show that ‖ui‖2 = n2 − n for i = 1, . . . , n. By symmetry,

r(PUn) = max
θi=±1

∥∥∥ n∑
i=1

θiui

∥∥∥ = max
1≤k≤n

‖u1 + . . .+ uk − uk+1 − . . .− un‖.

One can easily evaluate

‖u1 + . . .+ uk − uk+1 − . . .− un‖2 = 4kn(n− k) ≤ n3.

Hence, E(PUn) = r(PUn) ≤ n3/2.
Let KB,E be any rectangular brick in `2 with an orthonormal basis B = (ek)∞k=1 and

a height E = (εk)∞k=1 such that PUn ⊆ KB,E . Observe that if i 6= j then

−n = (ui, uj) =
( ∞∑
k=1

(ui, ek) ek,

∞∑
m=1

(uj , em) em

)
=

∞∑
k=1

(ui, ek)(uj , ek).

Hence,
∞∑
k=1

|(ui, ek)||(uj , ek)| ≥ n for all i, j ∈ {1, . . . , n} with i 6= j.

Fix any k ∈ N and choose θi = ±1 for i = 1, . . . , n so that (θiui, ek) = |(ui, ek)|. Since

u
def
=
∑n
i=1 θiui ∈ PUn ⊆ KB,E , we obtain that

n∑
i=1

|(ui, ek)| =
n∑
i=1

(θiui, ek) = (u, ek) ≤ εk.

Then, taking into account everything above, we get

2n3 − 2n2 = n · (n2 − n) + (n2 − n) · n

≤
n∑
i=1

‖ui‖2 +

n∑
i,j=1

i 6=j

∞∑
k=1

|(ui, ek)||(uj , ek)|

=

∞∑
k=1

( n∑
i=1

|(ui, ek)|
)2

≤
∞∑
k=1

ε2
k = r2(KB,E).

By the arbitrariness of KB,E , we get E0(PUn)2 ≥ 2n3− 2n2 > n3 = E(PUn)2 as n > 2.
Moreover,

E0(PUn)

E(PUn)
≥
√

2n3 − 2n2

n3
=

√
2− 2

n
.
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Fixing any ε > 0 and setting K = E(PUn)−1PUn , we obtain the desired inequality for
large enough n. �

6. Possible geometric entropy for spaces without a Schauder basis

Investigation of geometric entropy defined above becomes impossible if X has no
basis. However, one can use finite Auerbach systems, which behave like orthonormal
systems in a Hilbert space. Let X be a finite dimensional normed space of dimension
n ∈ N. A system of vectors (ek)nk=1 in X is called an Auerbach system if ‖ek‖ = 1 for
k = 1, . . . , n and there are functionals (e∗k)nk=1 in X∗ such that ‖e∗k‖ = 1 for k = 1, . . . , n
and e∗i (ej) = δi,j for i, j = 1, . . . , n. Evidently, in this case x =

∑n
k=1 e

∗
k(x) ek for

each x ∈ X. Every finite dimensional normed space contains an Auerbach system [13,
Proposition 1.c.3].

More generally, a system of elements (ek)nk=1 in a (not necessary finite dimensional)
Banach space is called an Auerbach system if (ek)nk=1 is an Auerbach system in its linear
span [ek]nk=1. One can show that, in a Hilbert space a system (ek)nk=1 is an Auerbach
system if and only if (ek)nk=1 in an orthonormal system.

Let X be a Banach space with an Auerbach system B = (ek)nk=1, X0 = [ek]nk=1

and biorthogonal functionals (e∗k)nk=1, e∗k ∈ X∗0 and let E = (εk)nk=1 be a collection of
nonnegative numbers.

Definition 6.1. An Auerbach brick (more precisely, an n-dimensional Auerbach brick)
is defined to be the following set

KB,E =
{
x ∈ X0 : |e∗k(x)| ≤ εk for k = 1, . . . , n

}
.

Since we do not assume εk > 0 for all k = 1, . . . , n in the above definition, we have
that any n-dimensional Auerbach brick is an m-dimensional Auerbach brick with m ≥ n.

Like bricks, Auerbach bricks are closed absolutely convex sets. Moreover, all are
compact, and so, all the radii of an Auerbach brick mean the same.

Definition 6.2. Let X be a Banach space. The Auerbach entropy Ea(A) of a set A ⊆ X
is defined to be the infimum of the set of reals α ≥ 0 possessing the following property:
for every ε > 0 there exists an Auerbach brick KB,E of radius r(KB,E) ≤ α such that
A ⊆ KB,E + εBX . If such a number α does not exist then we set Ea(A) =∞.

For the Auerbach entropy analogues of proposition 4.2, 4.3 and 4.7 are true. Moreover,
the following inequality holds in the general case.

Proposition 6.3. Let X be a Banach space and A ⊆ X. Then Ea(A) ≤ E0(A).

Proof. If E0(A) = ∞ then there is nothing to prove. Let E0(A) < ∞. Fix any ε > 0
and choose a 1-unconditional basis B = (en)∞n=1 of X and a sequence of nonnegative
numbers E = (εn)∞n=1 such that r(KB,E) < E0(A) + ε. Then choose N ∈ N so that∥∥∑

n>N εnen
∥∥ < ε. Observe that B′ = (en)Nn=1 is an Auerbach system. Indeed, set

X0 = [en]Nn=1 and fn = e∗n|X0
for n = 1, . . . , N . Then fi(ej) = e∗i (ej) = δi,j for

i, j = 1, . . . , N and

‖fn‖ ≤ ‖e∗n‖ = sup
x∈BX

‖e∗n(x) en‖
by Lemma 1.3

≤ sup
x∈BX

∥∥∥ ∞∑
k=1

e∗k(x) ek

∥∥∥ = sup
x∈BX

‖x‖ = 1.

Since obviously ‖fn‖ ≥ 1, we obtain ‖fn‖ = 1 for n = 1, . . . , N , completing the
proof that B′ = (en)Nn=1 is an Auerbach system. Since any x ∈ A has a representation

x = y + z, where y =
∑N
n=1 e

∗
n(x) en =

∑N
n=1 fn(y) en and z =

∑
n>N e

∗
n(x) en with

|fn(y)| = |e∗n(x)| ≤ εn for n = 1, . . . , N and ‖z‖ ≤ ε, we obtain that A ⊆ KB′,E′ + εBX ,
where E ′ = (εn)Nn=1. It is immediate that KB′,E′ ⊆ KB,E . Thus, Ea(A) ≤ E0(A) + ε. By
arbitrariness of ε > 0, we obtain that Ea(A) ≤ E0(A). �
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7. Remarks and open problems

As mentioned above, not much is known about compact sets having infinite geometric
entropy.

Problem 7.1. Does there exist an infinite dimensional separable Banach space X which
is not isomorphic to a subspace of c0 such that all precompact sets in X have finite
geometric entropy (unconditional entropy)?

By Theorem 5.6, for every ε > 0 there exists a set K in `2 such that E(K) = 1 and

E0(K) >
√

2− ε. Is the latter estimate sharp?

Problem 7.2. Evaluate the number

Υ = sup
K⊆`2

E(K)=1

E0(K) ∈ [
√

2,+∞].

In particular, is Υ finite?

Problem 7.3. Evaluate the geometric entropy of the closed unit ball of an n-dimensional
subspace of `2.

Problem 7.4. Let 1 ≤ p <∞. Evaluate the geometric entropy (unconditional entropy)
of the closed unit ball of the n-dimensional subspace spanned by e1, . . . , en in `p, where
(en)∞n=1 is the standard basis of `p.

We also do not know if the basis constant can influence on the geometric entropy.

Problem 7.5. Let X be a Banach space with a monotone4 Schauder basis. Define the
monotone entropy by

Em(A) = inf
A⊆KB,E

r(KB,E),

where the infimum is taken over all compact monotone bricks KB,E in X. Is Em(A) =
E(A) for all subsets A ⊆ X?
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