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S. ALVAREZ-ANDRADE

ERDÖS-RÉNYI LAW FOR THE LOCAL TIME OF THE HYBRID

PROCESS

Our aim in this paper is to study the Erdös-Rényi law for the local time of the hybrid

of empirical and partial sums process. The corresponding local time can be see as
a modified version of the local time of the symmetric random walk by introducing a

time t and a sequence of independent with the same distribution random variables
Xi’s, independent of the random walk.

1. Introduction

The Erdös-Rényi law states the convergence properties of the maximal average gain
of a player over a short period in a fair game, just as the ordinary law of large numbers
does for the average gain over a long period. In the following theorem we give the general
form of this result (cf. [20]).

Theorem 1.1. Let {Xi}i≥1 be a sequence of independent, identically distributed, non-
degenerate random variables on a probability space (Ω, A, P ). Suppose that the moment
generating function of X1 given by f(s) = E[esX1 ] is finite for s ∈ (0, s0). Furthermore
suppose that E[X1] = 0. Let α be any number such that that the function f(s)e−sα takes
on its minimum at some point in the open interval (0, s0), and set

min
s∈(0,s0)

f(s)e−sα = e−1/c.

Then c > 0, and setting S(0) = 0, S(n) = X1 + · · ·+Xn, it follows that

lim
N→∞

max
0≤n≤N−[c logN ]

S(n+ [c logN ])− S(n)

[c logN ]
= α, a.s.

The list of references related to the Erdös-Rényi laws is very important. Then we give
some references corresponding to our approach. We refer to [9] where almost sure limit
Theorems was proved for maxima of functions of moving blocks of size c log n of inde-
pendent random variables (rv’s) and for maxima of functions of the empirical probability
measures of these blocks, several examples was presented as corollaries for frequently
used test statistics and point estimators, [22] where it was shown that the results of [9]
can be extended to cover also situations of stochastic processes where stationarity and
independence of increments are not generally available, but for randomly chosen sub-
sequences of the process. In [14] (also see references therein) the Erdös-Rényi law for
renewal processes was constructed from nonidentically distributed random variables, [20]
where the Erdös-Rényi type law for cumulative processes in renewal theory was studied,
[21], [23], [11] where the gap between the Erdös-Rényi and invariance principle for the
partial sums process was studied, [5] where it was studied the exact convergence rates
in Erdös-Rényi type theorems for renewal processes, [13] where functional version of the
Erdös-Rényi law concerning increments of partial sum processes over subintervals of crit-
ical length aT ≈ c log T was studied, [15] where the Erdös-Rényi law for the iterated
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Poisson processes was obtained (cf. Lemma 2.4), [17] where the Erdös-Rényi law for
the hybrid process was studied, [8] where the Erdös-Rényi law was stated for the local
time of a recurrent random walk (cf. Theorem 2) and [7] where the Erdös-Rényi law was
stated for the local time of a simple symmetric random walk.

In our case, we consider the process Ã =
{
Ãn(t), t ∈ R, 1 ≤ n <∞

}
given by

Ãn(t) =
Ũ(n, t)√

n
,(1)

where

Ũ(., t) =

Ũ(n, t) =

n∑
j=1

εj1{Xj≤t}


n≥1

(2)

where 1A denotes the set indicator function, and sequences {εi}i≥1 and {Xi}i≥1 satisfies
the following conditions

• (C1) the random variables εi = S(i) − S(i − 1), (i ≥ 1) are i.i.d., with P (εi =
1) = P (εi = −1) = 1/2,

• (C2) the random variables Xi, (i ≥ 1) are i.i.d. of same cumulative distribution
function (cdf) F ,

• (C3) the random variables Xi’s and εi’s are independent.

The process Ã is known in the literature as the hybrids of empirical and partial sums
processes, see for instance [16] and [3] where an approximation for the local time of the
hybrid process by the local time of some Brownian motion with random time was stated.

Let us define the local time of Ãn(t) by

ξxt (Ãn) =
1√
n

∑
s≤t

1{Ãn(s)=x}, t ∈ R, x ∈ R.(3)

Our aim here is to study the behavior of

lim
n→∞

max
0≤t≤n−[c logn]

ξxt+[c logn](Ãn)− ξxt (Ãn)

[c log n]
.

Our paper is organized as follows, in the rest of this section we give some useful results
of the processes that are in studying. In section 2, we state our main result, jointly with
some technical Lemma’s giving the proofs.

We will assume without loss of generality that all random variables and processes are
defined on the same probability space.

Diebolt in [12] introduced and investigated nonparametric testing procedures for the
autoregression function in a class of nonlinear autoregressive processes of order one,

by considering ˜̃U(n, t) =
∑n
j=1 εjH(Xj)1{Xj≤t} where the function H(·) has bounded

variation on the real line in the place of Ũ(n, t). The asymptotic properties of their
procedures can be derived from the limiting behavior of the hybrids of empirical and
partial sums processes. The time transformation for the limiting Wiener process given

in [12] is given by J̄n(t) =
∫ t
−∞H2(s)dFn(s), where

Fn(t) =
1

n

∑
1≤i≤n

1{Xi≤t}, for −∞ < t <∞.

Later, Horváth in [16], showed that the random time change “J̄n(t)” can be replaced with

a non-random time change says J̄(t) =
∫ t
−∞H2(s)dF (s), where F (·) is the common distri-

bution function of {X1, X2, . . .}, without reducing the rates of the approximations given
in [12]. He also investigated the almost sure approximation of the two-parameter process
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{An(t) : −∞ < t <∞, 1 ≤ n <∞} by a two parameter Wiener process. Horváth et al.
in [17] studied the weighted bootstrap processes {βn(t) = n−1/2

∑
1≤i≤n(εi− ε̄n)1{Xi≤t} :

−∞ < t <∞, 1 ≤ n <∞} in order to perform statistical test to detect a possible change
in the distribution of independent observations. The complete convergence for the pro-
cess {Ãn(t) : −∞ < t < ∞, 1 ≤ n < ∞} was deeply investigated, in a general setting,
in [2] and [1].

Remark 1.1. By [16], p.5, we have without loss of generality, there is a sequence of
i.i.d. random variables {Yi}i≥1 uniform on (0, 1) such that Xi = Q(Yi), with Q(y) =
inf {x : F (x) ≥ y} i.e. the quantile function of F , then we can consider U(., t)(0 ≤ t ≤ 1)

in the place of Ũ(., t)(−∞ < t <∞).

Remark 1.2. From [17], p.66, we have, for any c > 0

lim
n→∞

1

[c log[n1/3]]
max

0≤i≤[n1/3]
U(N(i+ [c log[n1/3]]))− U(N(i)) = α(c), a.s.

where {N(t), 0 ≤ t < ∞} denote an homogeneous Poisson process and α(c) is in a one
to one correspondence with the moment generation function of U(N(1)).

Let f(x), x ∈ Z be a real valued function. It is well known that we have the following
relation

n∑
i=1

f(S(i)) =

∞∑
x=−∞

f(x)Lxn(S), n = 1, 2, . . .

where Lxn(S) denotes the local time of S given by

Lxn(S) =

n∑
i=1

1{S(i)=x}.(4)

Let us mention that one of the best recent references on local times for random walks
on lattices of Rd and for Brownian motions is the book of [6], see also [18] and [19].

We will restrict ourselves to the one-dimensional case i.e. the random walk on Z and
we will denote by log t = log(t∨ e), log2 t the two-iterated logarithm i.e. log2 t = log log t
and [x] denote the integer part of some real x.

Now, we consider that

ξxt (Ãn) =

∫ 1

0

δst (Fn)dsν
x
s (Vn)

this representation of the local time of the hybrid process was given by the author on

[3] and was obtained by using the following arguments : Ãn(t)
d
= Vn (Fn(t)), where

Fn(t) = n−1
∑n
i=1 1{Xi≤t} and Vn(t) =

∑[nt]
i=1 εi/

√
n. The local time time at a level x up

to t of the empirical distribution function Fn(t) was defined by

δxt (Fn) =
1√
n

∑
s≤t

1{Fn(s)=x}.(5)

and the local time for Vn was given by

νxt (Vn) =

[nt]∑
j=1

1{∑j
i=1 εi=[

√
nx]}, x ∈ R.(6)

It is not difficult to see that νx1 (Vn), can be written as

νx1 (Vn) = L
[
√
nx]

n (S)(7)

where L
[
√
nx]

n (S) is the local time of the simple symmetric random walk defined by the
random variables ε′is (see (4)).



4 S. ALVAREZ-ANDRADE

Notice that for the symmetric random walk, there are well known distribution prop-
erties of Lxn(S), for x > 0 and x = 0 (see Theorem 9.4 of [19]).

2. Results and proofs

We have to deal with the Erdös-Rényi type increments for the local time of the hybrid
process. It is well know that for this kind of increments we can not use invariance
principle and the limit denoted by α is in correspondence with c = c(α).

Theorem 2.1. Under conditions (C1), (C2) and (C3), we have with probability one

lim
n→∞

max
0≤t≤n−[c logn]

|ξxt+[c logn](Ãn)− ξxt (Ãn)|
c log n

= α

where α(c) is such that ρ(α) = e−c/2 with

ρ(α) =
(1− α)(1−α)

(1− 2α)(1/2−α)
(1/2 < α < 1).

Notice that α(c) and ρ(α) corresponds to the case of the Erdös-Rényi law for the local
time of the symmetric random walk, see [8].

Proof of Theorem 2.1. The proof of our Theorem 2.1 will be based on some previous
remark and the following two technical Lemma’s.

Remark that we have

ξxt+[c logn](Ãn)− ξxt (Ãn) =

∫ 1

0

δst+[c logn](Fn)dsν
x
s (Vn)−

∫ 1

0

δst (Fn)dsν
x
s (Vn)

=

∫ 1

0

(
δst+[c logn](Fn)− δst (Fn)

)
dsν

x
s (Vn)

=

n∑
y=1

(
δyt+[c logn](Mn)− δyt (Mn)

)(
L

[
√
nx]

y (S)− L[
√
nx]

y−1 (S)

)
(8)

where Mn(t) = nFn(t) and y = [ns].
From [17] (cf. proof of Theorem 1.4) and by using Remark 1.1, we have

{nFn(s), 0 ≤ s ≤ 1} d
= {N(sτ(n+ 1)), 0 ≤ s ≤ 1}(9)

where 0 = τ(0) < τ(1) < · · · < τ(n+1) are the renewal times of the homogeneous Poisson
process with intensity parameter 1 denoted by {N(t), 0 ≤ t <∞}, which is independent
of {εi, 1 ≤ i <∞}.

Now, roughly speaking replace s in (9) by i
τ(n+1) + [c logn]

τ(n+1) , then we have

{N
((

i

τ(n+ 1)
+

[c log n]

τ(n+ 1)

)
τ(n+ 1)

)
, 0 ≤ i ≤ n− [c log n]}

d
= {N (i+ [c log n]) , 0 ≤ i ≤ n− [c log n]} .

From the just mentioned arguments, in the place of (8) we consider
n∑
y=1

(
δyi+c logn(N(·))− δyi (N(·))

)(
L

[
√
nx]

y (S)− L[
√
nx]

y−1 (S)

)
, 0 ≤ i ≤ n− [c log n]

=

n∑
y=1

i+[c logn]∑
j=i

1{N(j)=y}

(
L

[
√
nx]

y (S)− L[
√
nx]

y−1 (S)

)
, 1 ≤ i ≤ n− [c log n].(10)

Notice that y − 1 could be replaced by y − 2 (for y ≥ 2) in the last relation, because y
and y− 2 corresponds to return times at the level [

√
nx] for the symmetric random walk
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(i.e. y and y − 2 are both even integers or odd integers). Now, remark that (10), can be
written as

i+[c logn]∑
j=i

n∑
y=1

1{N(j)=y}1{S(y)=[
√
nx]}, 1 ≤ i ≤ n− [c log n]

=

i+[c logn]∑
j=i

1{S(N(j))=[
√
nx]}, 1 ≤ i ≤ n− [c log n].(11)

From (11), we have

ξxt+[c logn](Ãn)− ξxt (Ãn) =

[t]+[c logn]∑
j=[t]

1{S(N(j))=[
√
nx]}, 1 ≤ t ≤ n− [c log n].(12)

Now, we state two technical Lemma’s, their proof will be based on (12).

Lemma 2.1. Under the same conditions of Theorem 2.1, we have,

lim sup
n→∞

max
0≤t≤n−[c logn]

ξxt+[c logn](Ãn)− ξxt (Ãn)

[c log n]
≤ α, a.s.

Proof. Let us define An =
{
ξxt+[c logn](Ãn)− ξxt (Ãn) ≥ α(1 + 3ε)[c log n]

}
for all ε > 0,

then

P

(
sup

0≤t≤n−[c logn]

(
ξxt+[c logn](Ãn)− ξxt (Ãn)

)
≥ α(1 + 3ε)[c log n]

)
≤
∞∑
n=0

P (An) .

Our first aim is to evaluate P (An). Let us define α+
ε = α(1 + 3ε) and τ = [t]. Without

loss of generality we can consider that N(τ) and N(τ + [c log n]) are both even integers
and from (12), we consider

P (An) = P
(
LxN(τ+[c logn])(S)− LxN(τ)(S) ≥ α+

ε [c log n]
)

= P
(
LxN(τ)+(N(τ+[c logn])−N(τ))(S)− LxN(τ)(S) ≥ α+

ε [c log n]
)

= P
(
LxN(τ)+(N(τ+[c logn])−N(τ))(S)− LxN(τ)(S)

≥ α+
ε [c log n] ∩ (N(τ + [c log n])−N(τ)) > 2[c log n]

)
+ P

(
LxN(τ)+(N(τ+[c logn])−N(τ))(S)− LxN(τ)(S)

≥ α+
ε [c log n] ∩ (N(τ + [c log n])−N(τ)) ≤ 2[c log n]

)
≤ P (N(τ + [c log n])−N(τ) ≥ 2[c log n])

+ P
(
LxN(τ)+2[c logn](S)− LxN(τ)(S) ≥ α+

ε [c log n]
)
.

From the independence between S and N(·) and stationarity of the increments of the
Poisson process, we have

P (An) ≤ P (N([c log n]) > 2[c log n])

+
∑
l≥0

P
(
Lx2l+2[c logn](S)− Lx2l(S) ≥ α+

ε [c log n])
)
P (N(τ) = 2l) ,

given

P (An) ≤ P (N(c log n) ≥ 2c log n)(13)
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+
∑
l≥0

P
(
Lx2l+2[c logn](S)− Lx2l(S) ≥ α+

ε [c log n])
)
e−τ

(τ)2l

(2l)!
.

Recall that

P (N(λ)− λ ≥ a) ≤ ea−(λ+a) ln(1+ a
λ ).

Then for the first term in the right hand side of (13), we have

P (N(c log n) ≥ 2c log n) ≤ P (N(c log n)− c log n ≥ c log n)(14)

≤ ec logn((1−2 log(2)) (c > 1/ log 2).

Now, from Lemma 3.1 of [8] for l > 0, we have

P
(
Lx2l+2[c logn](S)− Lx2l(S) ≥ α+

ε [c log n]
)

≤ C
(

[c log n]

l

)1/2

P
(
Lx2[c logn](S) ≥ α+

ε [c log n]
)

with C some constant depending only on the distribution of εi’s and from Lemma 3.2 of
[8] we have for l ≥ 0 and l∗ = max(1, l)

P
(
Lx2l+2[c logn](S)− Lxl (S) ≥ α+

ε [c log n]
)
≤ C

(
2[c log n]

l∗

)1/2

(ρ(α+
ε (1− ε)))

[c logn]
2

and from in (3.24) of [8], we have finally that ρ(α+
ε (1− ε)) ≤ ρ(α(1 + ε)). Given finally

in our case

P
(
Lxl+[c logn](S)− Lxl (S) ≥ α+

ε [c log n]
)
≤ C ([c log n])

1/2
(ρ(α(1 + ε)))

[c logn]
2

Tacking in account (13) and (14), we have

P (An) ≤ e−c logn(2 log(2)−1) + C ([c log n])
1/2

(ρ(α(1 + ε)))
[c logn]

2 .

Recall that in the case of the Erdös-Rényi law for the local time of the symmetric random
walk, we have

ρ(α) =
(1− α)(1−α)

(1− 2α)(1/2−α)
(1/2 < α < 1).

with α(c) such that ρ(α) = e−1/2c and for some δ > 0, we have

ρ(α(1 + ε)) ≤ e−(1+δ)/(2c)

see (3.24) of [8]. Then,

P (An) = P
(
ξxt+[c logn](Ãn)− ξxt (Ãn) ≥ α+

ε [c log n]
)

≤ n−(2 log(2)−1)c + (log n)1/2n−(1+δ)/2.

Let k be an integer such that k(2 log(2)− 1)/ log(2) > 1, then

∞∑
n=1

P (Ank) <∞

Then, we can conclude by the Borel-Cantelli Lemma. �

Lemma 2.2. Under the same conditions of Theorem 2.1, we have

lim inf
n→∞

max
0≤t≤n−[c logn]

ξxt+c logn(Ãn)− ξxt (Ãn)

[c log n]
≥ α, a.s.
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Proof. Define for all ε > 0

Bn = { sup
0≤t≤n−[c logn]

{ξxt+[c logn](Ãn)− ξxt (Ãn)} ≤ α(1− ε)[c log n]}.

Without loss of generality, we can consider that N(t) and N(t+ [c log n]) are both even
integers. Let us define α−ε = α(1− ε). As in the proof of Lemma 2.1 , we have

P (Bn) = P

(
sup

0≤t≤n−[c logn]

{LxN(t+[c logn])(S)− LxN(t)(S)} ≤ α−ε [c log n]

)
then we must give an upper bound for the last probability. In the same way as in [21]
(see also [4]), we have that

sup
0≤t≤n−[c logn]

{N(t+ [c log n])−N(t)} ≥ max
i=0,··· ,n−[c logn]−1

{N(i+ [c log n])−N(i)}

given

P (Bn) ≤ P
(

max
i=0,··· ,[n/(c logn)]−1

{LxN(i[c logn])(S)− LxN((i−1)[c logn])(S)} ≤ α−ε [c log n]

)

=

[n/(c logn)]−1∏
i=1

P
(
LxN(i[c logn])(S)− LxN((i−1)[c logn])(S) ≤ α−ε [c log n]

)

=

[n/(c logn)]−1∏
i=1

P
(
LxN([c logn])(S) ≤ α−ε [c log n]

)
,(15)

where we have used that

LxN(i[c logn])(S)− LxN((i−1)[c logn])(S)
d
= LxN([c logn])(S).

Now,

P
(
LxN([c logn])(S) ≤ α−ε [c log n]

)
≤ P

(
LxN([c logn])(S) ≤ α−ε [c log n], N([c log n]) > [c log n]

)
+ P (N(δ[c log n]) ≤ [c log n])

≤ P
(
Lx[c logn](S) ≤ α−ε [c log n]

)
+ P (N(δ[c log n]) ≤ [c log n])

for some 0 < δ < 1.
The last inequality jointly with (15) gives

P (Bn) ≤
[n/(c logn)]−1∏

i=1

P
(
LxN([c logn])(S) ≤ α−ε [c log n]

)

≤ P
(
Lx[c logn](S) ≤ α−ε [c log n], N([c log n]) > [c log n]

)[n/(c logn)]−1

(16)

+P (N(δ[c log n]) ≤ [c log n])
[n/(c logn)]−1

.

For to evaluate the second term in the right hand-side of the precedent inequality (i.e.
(16)), let us recall that for the Poisson process

{N(t) > n} = {Tn ≤ t}
where Tn is the sum of n independent random variables with common law exponential
with parameter 1, then

P (N(δ[c log n]) ≤ [c log n]) = P
(
T[c logn] > δ[c log n]

)
= P

(
T[c logn]

[c log n]
> δ

)
= O(e−[c logn]I(δ))(17)
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where I(x) = x− 1− log x with I(x) ↑ ∞, as x ↓ 0.
The first term in the right hand-side of (16) can be evaluated by

P
(
LxN([c logn])(S) ≤ α−ε [c log n], N([c log n]) > [c log n]

)[n/(c logn)]−1

≤ P
(
Lx[c logn](S) ≤ α−ε [c log n]

)[n/(c logn)]−1

= 1− P
(
Lx[c logn](S) > α−ε [c log n]

)[n/(c logn)]−1

.

The last term can be evaluated by recalling that for 0 < η < 1/2, we have

P
(
L0

2n(S) > [2ηn]
)
≥ c3(η)

1√
n
ρn(η)(18)

and

ρ(α(c)− ε1) ≥ e−
1−δ
c ,(19)

obtained in the same way as in [7].
From (18) and (19) replacing 2n by [c log n] and in the same way as in [7], we have

1− P
(
Lx[c logn](S) > α−ε [c log n]

)[n/(c logn)]−1

≤ e{−C1cn
δ−ε
2 (c logn)−1}.(20)

By choosing ε = δ/2 in (19) giving (20) and tacking in account (17) jointly with (16), we
have

P (Bn) < e{−c4n
δ
4 (c logn)−1}

then
∞∑
n=1

P (Bn) <∞

which means that with probability 1, only finitely many of the events Bn can occur.
Then by using the Borel-Cantelli lemma we can conclude. �

The proof of Theorem 2.1 is obtained from Lemma’s 2.1 and 2.2. �
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