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V. I. SENIN

SOJOURN MEASURES OF RANDOM WALKS ON DETERMINISTIC

SEQUENCES

We prove that for some class of random walks {Z(n), n ≥ 0}, the random sequence
xZ(n) almost surely inherits the property of a deterministic sequence xn to be uni-

formly distributed.

1. Introduction

The main object of this article is a random walk on indexes of a deterministic sequence.
More specifically, let X be a separable metric space, F be a Borel σ-algebra on this space,
and {xn} be a sequence of points from this space. In the article we will investigate a
uniform distribution of the sequence {xZ(n), n ≥ 0}, where Z is a random walk on Z+

with a reflecting screen at zero.
Asymptotic properties of random walks on deterministic sequences are investigated,

for example, in the papers [1] and [2], where authors consider a measure-preserving
automorphism S of probability space (M,M, µ), and a random walk along the orbits of
S, that satisfy the following condition: a particle at x ∈ M jumps to Sx or to S−1x.
Denote by ξx(n) the position at time n of the particle, which starts at x. In [1], [2] the
question of the existence of an invariant measure, that is absolutely continuous w.r.t. µ,
is investigated for such random walks, along with the question of the convergence for
the limiting distribution of ξx(n) to such a measure. These questions are considered for
diophantine rotations of the torus Td in the article [1], and for Anosov diffeomorphisms
in the paper [2].

In the present article conditions are given, sufficient for a random walk {Z(n), n ≥ 0}
to have the following property: for any sequence {xn} which is uniformly distributed with
some measure µ, almost all trajectories of the corresponding random sequence {xZ(n)}
have the same property.

Our approach is based on the decomposition of the time axis (0,∞) into the random
intervals (θj−1, θj ], j ≥ 0, where θ−1 = 0 and θj = sup{n : Z(n) ≤ j} is the moment
of the last visit of the state j (j ≥ 0), with a subsequent use of the methods of renewal
theory. Despite random variables {θj , j ≥ 0} not being stopping times, such an approach
becomes possible thanks to the general results from the paper [4].

2. Main result

Definition 1. Let {xn, n ≥ 0} be a sequence of points from the space X. It is said that
this sequence is uniformly distributed with measure µ (u.d. with measure µ), if for any
A ∈ F such that µ(∂A) = 0 one has the convergence of sojourn measures µN of the set
A

lim
N→∞

µN (A) := lim
N→∞

1

N + 1

N∑
n=0

χxn∈A = µ(A).
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Note that being uniformly distributed with measure µ means the weak convergence
of sojourn measures µN of the sequence {xn, n ≥ 0} to µ.

Another definition of this property for a sequence in a compact metric space one can
find in [3], chapter 3, § 1.

Define homogeneous Markov chain {Z(n), n ≥ 0} with phase space Z+, that starts
from zero and has the following transition probabilities:
pj,i = pi−j , if i > 0; pj,0 =

∑
n≥j

p−n; here pn ≥ 0 for integer n;
∑
n∈Z

pn = 1 . Assume

also that the following condition holds:
(A1) For integer n > 1 : pn = 0.
Note that one can interpret Markov chain Z as a random walk with a reflecting screen

at zero.
The main result of the article is formulated in the following Theorem.

Theorem 1. Let the following conditions hold:
1)
∑
n∈Z

npn > 0;

2)
∑
n∈Z

n2pn <∞.

Then for any sequence {xn, n ≥ 0}, which is uniformly distributed with some proba-
bility measure µ, almost surely the sequence {xZ(n), n ≥ 0} has the same property.

Below we make several remarks; before doing that, let us recall that θj denotes the
moment of the last visit of the state j (j ≥ 0).

Remark 1. Recall that the random walk in the theorem starts from zero. After minor
changes in the proof of the theorem, one can obtain the similar result for the random
walk, which starts from any non-negative state.

Remark 2. The first condition of the theorem is necessary because Z has to be transient.
Otherwise, the decomposition of the time axis into the random intervals (θj−1, θj ], j ≥ 0
does not make any sense, because in this case even θ0 =∞ almost surely.

Remark 3. The second condition of the theorem is imposed in order to guarantee, that
the random variables {θj−θj−1, j ≥ 1} have finite expectations. This is a crucial property
for us, which allows a subsequent use of the methods of the renewal theory. Note that the
proof of the fact that {θj − θj−1, j ≥ 1} has finite expectations is nontrivial and is based
on the article [6].

Remark 4. In the paper it is proved, that the condition (A1) guarantees the independence
of the random variables {θj−θj−1, j ≥ 1}. This condition is an analogue of the following
property in continuous time: the process is left-continuous and upper-semicontinuous.
The reason for us to impose this condition is that, without it, the random variables
{θj − θj−1, j ≥ 1} have no means to be independent. Seemingly, their dependence can
be controlled in terms of properly chosen Markov chain, but then the application of the
renewal theory methods becomes more complicated. Hence in this paper, for the sake of
simplicity, we restrict ourselves to the chains Z that satisfy condition (A1).

3. Proof of Theorem 1

To make the structure of the proof more transparent, we omit the proofs of auxiliary
Lemmas here. These proofs are given in Section 4.

Lemma 1. Suppose that the following condition holds true for a sequence of random
elements {ζn}: for each A ∈ F , such that µ(∂A) = 0

lim
N→∞

1

N + 1

N∑
n=0

χζn∈A = µ(A) a.s.
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Then the sequence {ζn} is uniformly distributed with measure µ almost surely.

By Lemma 1, it is enough to prove that for any A from F , such that µ(∂A) = 0

(1) lim
N→∞

1

N + 1

N∑
n=0

χZ(n)∈W = µ(A) a.s.,

where W := {n ≥ 0 : xn ∈ A}.
We conduct the proof of the statement (1) for such sets in several stages. The first is

contained in the following Lemma.

Lemma 2. Let W be a subset of Z+, such that lim
N→∞

1
N+1

N∑
m=0

χm∈W = a. Then

lim
N→∞

E
1

N + 1

N∑
m=0

χZ(m)∈W = a.

Further, let {ξi, i ≥ 1} be a sequence of i.i.d. random variables and P{ξ1 = j} =

pj , j = 1, 0,−1,−2, .... Let Ẑ be a random process, given by the relations

(2) Ẑ(0) = 0 a.s., for each natural i : Ẑ(i) = (Ẑ(i− 1) + ξi) ∨ 0 a.s.

Clearly, then the distributions of the random processes Z and Ẑ are the same, hence
in what follows we identify Z with Ẑ.

Recall that θ−1 = 0, θj = sup{n : Z(n) ≤ j} is the moment of the last visit of the
state j (j ≥ 0). Decompose the time axis (0,∞) into the random intervals (θj−1, θj ],
j ≥ 0.

Lemma 3. Consider a random sequence {ξn, n ≥ 1}. Then the segments of the sequence
{ξθj+1, ..., ξθj+1

}, are independent and identically distributed. Particulary, the random
variables {θ1 − θ0, θ2 − θ1, ...} are i.i.d.

In Lemma 2 above, the set W and the constant a are not specified. Now, let W =
{n ≥ 0 : xn ∈ A}, a = µ(A). Define the random variables σj in the following way

σ0 :=

θ0∑
k=0

χZ(k)∈W , σj :=

θj∑
k=θj−1+1

χZ(k)∈W , j ≥ 1.

Lemma 4. Suppose that there exists lim
N→∞

E 1
N+1

N∑
m=0

χZ(m)∈W = a, and the random

variables σj , j ≥ 1 are independent. Then

lim
N→∞

1

N + 1

N∑
m=0

χZ(m)∈W = a a.s.

Note that for each natural j and non-negative n : {σj = n} ∈ σ{ξθj−1+1, ..., ξθj}, hence
the random variables σj , j ≥ 1 are independent. Therefore the conditions of Lemma 4
hold, so one can deduce (1). The theorem is proved.

4. Proofs of Lemmas 1 – 4

The proof of Lemma 1. Let {αn, n ≥ 1} be a dense set in X and {rk, k ≥ 1} be a dense
set in (0,∞), such that for any positive integer n and k

µ(∂B(αn, rk)) = 0.

Let A be the class of finite intersections of the balls {B(αn, rk)), n, k ∈ N}. Then for
any set A from A

lim
n→∞

µn(A) = µ(A),
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which implies the weak convergence of measures µn to measure µ, see [5], chapter 1, § 2,
corollary 1. �

The proof of Lemma 2. We represent E 1
N

N∑
m=0

χZ(m)∈W as a sum
N∑
n=0

vn,Ncn, where cn =

1
n+1

n∑
k=0

χk∈W , vn,N are some numbers, which will be identified below.

Write the following chain of transformations

E
1

N + 1

N∑
m=0

χZ(m)∈W =

1

N + 1

N∑
m=0

P{Z(m) ∈W} =
1

N + 1

N∑
m=0

m∑
n=0

P{Z(m) = n}χn∈W =

1

N + 1

N∑
n=0

χn∈W

N∑
m=n

P{Z(m) = n} =

N∑
n=0

wn,Nχn∈W ,

where

wn,N =
1

N + 1

N∑
m=n

P{Z(m) = n}.

Denote an = χn∈W . Then

cn =
1

n+ 1
(a0 + ...+ an)→ a, n→∞.

It is sufficient to prove that

w0,Na0 + ...+ wN,NaN → a, N →∞.

To do that, express w0,Na0 + ...+wN,NaN using the numbers c0, c1, ..., cN and apply
Toeplitz theorem.

w0,Na0 + ...+ wN,NaN = w0,Nc0 + w1,N (2c1 − c0) + ...+ wN,N ((N + 1)cN −NcN−1) =

c0(w0,N − w1,N ) + ...+ cN−1(NwN−1,N −NwN,N ) + cN ((N + 1)wN,N ).

Further, denote

v0,N = w0,N − w1,N ,

v1,N = 2(w1,N − w2,N ),

...

vN−1,N = N(wN−1,N − wN,N ),

vN,N = (N + 1)wN,N .

Now, to prove that
N∑
n=0

vn,Ncn → a, N → ∞, let us verify the conditions of Toeplitz

theorem:

(1)
N∑
n=0

vn,N → 1, N →∞;

(2) for any non-negative n : vn,N → 0, N →∞;
(3) for any integer n, N , such that 0 ≤ n ≤ N : vn,N ≥ 0.
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Note that the third property has the following interpretation: the expectation of the
number of the visits to the state n during the first N steps of the random walk decreases
as n increases.

The first property holds true, because

N∑
n=0

vn,N = (w0,N − w1,N ) + ....+ (N(wN−1,N − wN,N )) + (N + 1)wN,N =

N∑
n=0

wn,N =

1

N + 1

N∑
n=0

N∑
m=n

P{Z(m) = n} =
1

N + 1

N∑
m=0

m∑
n=0

P{Z(m) = n} =
1

N + 1

N∑
n=0

1 = 1.

Note that Eξk > 0, hence Z is transient. Thus P{Z(N) = m} → 0, N →∞, so

wn,N =
1

N + 1

N∑
m=n

P{Z(m) = n} → 0, N →∞,

which implies the second property.
Let 1 ≤ k ≤ N . Then the following inequality holds true

(3)

N∑
m=0

P{Z(m) = 0} ≥
N∑
m=k

P{Z(m) = k}.

We prove the inequality (3) by induction on N. For N = 1 the required inequality is
obvious. Note, that for m ≥ n ≥ 1 :

P{Z(m) = n} =
m−1∑
i=n−1

P{Z(m) = n, Z(m− 1) = i} =
m−1∑
i=n−1

P{Z(m− 1) = i}pn−i.

Hence

N∑
m=k

P{Z(m) = k} =

N∑
m=k

m−1∑
i=k−1

P{Z(m− 1) = i}pk−i =

N−1∑
i=k−1

N∑
m=i+1

P{Z(m− 1) = i}pk−i ≤ (the induction assumption) ≤

N−1∑
i=k−1

N−1∑
m=0

P{Z(m) = 0}pk−i =

(
N−1∑
i=k−1

pk−i

)(
N−1∑
m=0

P{Z(m) = 0}

)
≤

N−1∑
m=0

P{Z(m) = 0} ≤
N∑
m=0

P{Z(m) = 0},

as required.
Thus v0,N ≥ 0.
Now let us prove the third property. Let us show that if 1 ≤ n ≤ N , then vn,N ≥ 0

using induction on N.
For N = 1 this is obvious. Suppose the statement is proved for N = 1, ...,M −1 (M ≥

2). Now let us prove it for N = M. Take M ≥ n+ 2. Then

vn,M = wn,M − wn+1,M =
M∑
m=n

P{Z(m) = n} −
M∑

m=n+1
P{Z(m) = n+ 1} =



96 V. I. SENIN

M∑
m=n

m−1∑
k=n−1

P{Z(m) = n, Z(m− 1) = k}−

M∑
m=n+1

m−1∑
k=n

P{Z(m) = n+ 1, Z(m− 1) = k} =

M∑
m=n

m−1∑
k=n−1

P{Z(m− 1) = k}pn−k −
M∑

m=n+1

m−1∑
k=n

P{Z(m− 1) = k}pn+1−k =

M−1∑
k=n−1

pn−k
M∑

m=k+1

P{Z(m− 1) = k} −
M−1∑
k=n

pn+1−k
M∑

m=k+1

P{Z(m− 1) = k} =

M−1∑
i=n−1

pn−i
M∑

m=i+1

P{Z(m− 1) = i} −
M−2∑
i=n−1

pn−i
M∑

m=i+2

P{Z(m− 1) = i+ 1} =

M−1∑
i=n−1

pn−i
M∑

m=i+1

P{Z(m− 1) = i} −
M−2∑
i=n−1

pn−i
M∑

m=i+2

P{Z(m− 1) = i+ 1} ≥

M−2∑
i=n−1

pn−i

(
M∑

m=i+1

P{Z(m− 1) = i} −
M∑

m=i+2

P{Z(m− 1) = i+ 1}
)

=

M−2∑
i=n−1

pn−i

(
M−1∑
m=i

P{Z(m) = i} −
M−1∑
m=i+1

P{Z(m) = i+ 1}
)
≥ 0,

by the induction assumption.
For M = n+ 1 and for M = n the third property is obvious. �

The proof of Lemma 3. The proof is based on the Corollary 2 from the article [4]. For
the reader convenience we formulate this statement below.

Proposition 1. Suppose that {ξk}k≥0 is a sequence of i.i.d. random variables and that
the sequence of random events {Fn}n≥0:

(F1) stationary (i.e. the sequence of random variables χFn
is stationary),

P{Fn} > 0,
(F2) χFn

= g(ξn+1, ξn+2, ...) for some measurable function g.
Also suppose that

(4) Fn ∩ Fn+m = E′n,n+m ∩ Fn+m, n ≥ 0,m > 0,

For some array of events {E′n,n+m}n≥0,m>0, with each E′n,n+m ∈ σn+1,n+m (here
σn+1,n+m is the σ-algebra generated by the random variables ξk, n + 1 ≤ k ≤ n + m),
and such that, for each fixed m, the sequence {E′n,n+m}n≥0, is stationary.

Put τ0 = min{n ≥ 0 : χFn
= 1}, τk+1 = min{n > τk : χFn

= 1}, k ≥ 0. Suppose,
that τk < ∞ a.s. for all k. Then the segments of the sequence {ξτk+1, ..., ξτk+1

}, are
independent and identically distributed. In particular, the random variables {τ1−τ0, τ2−
τ1, ...} are i.i.d.

Denote Fn := {∀m ≥ 1 : ξn+1 + ... + ξn+m ≥ 1}, E′n,n+m := {∀m′ : m ≥ m′ ≥ 1 :
ξn+1 + ... + ξn+m′ ≥ 1}, and g(xn+1, xn+2,...) := χ{∀m≥1 : xn+1+...+xn+m≥1}. Recall that
Z is given by (2).

Put

Z̃(0) := 0; Z̃(n) = ξ1 + ...+ ξn, n ≥ 1.

Then the inequality P{Fn} > 0 follows from the transience of the random walk Z̃. It
is easy to see that all other conditions of Proposition 1 hold true. Herein τk coincides
with θk. The lemma is proved. �
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The proof of Lemma 4. Recall, that θj := sup{n : Z(n) ≤ j}, and that

σ0 :=

θ0∑
k=0

χZ(k)∈W , σj :=

θj∑
k=θj−1+1

χZ(k)∈W , j ≥ 1.

First of all, note that the random variables θj , j ≥ 0 has finite expectations. Indeed,

let θ̃j := sup{n : Z̃(n) ≤ j}. Condition 2) of Theorem 1 is necessary and sufficient for

the random variables θ̃j , j ≥ 1 to have finite expectations; see [6], Theorem 5.1. Further,

for any non-negative n : Z̃(n) ≤ Z(n), hence if Z̃(n) ≥ j, then Z(n) ≥ j. Thus θ̃j ≥ θj ,
and Eθj <∞, as required.

Let K > 0 such that K > E(θ1 − θ0). First of all, prove that

(5) E
1

θn + 1

θn∑
m=0

χZ(m)∈W → a, n→∞.

Indeed, denote An := [nE(θ1 − θ0)] (here [x] is the integer part of number x). Then
from the strong law of large numbers, θn+1

An+1 → 1, n→∞, a.s.
Note that

E
1

An + 1

An∑
m=0

χZ(m)∈W → a, n→∞.

Further,

0 ≤ | 1

θn + 1

θn∑
m=0

χZ(m)∈W −
1

An + 1

An∑
m=0

χZ(m)∈W | ≤

|θn −An|
(An + 1)(θn + 1)

min{θn,An}∑
m=0

χZ(m)∈W +
|θn −An|

max{θn + 1, An + 1}
≤

(6)
2|θn −An|

max{θn + 1, An + 1}
≤ 2
|θn −An|
An + 1

→ 0, n→∞ a.s.,

hence

| 1

θn + 1

θn∑
m=0

χZ(m)∈W −
1

An + 1

An∑
m=0

χZ(m)∈W | → 0, n→∞, a.s.

Since

| 1

θn + 1

θn∑
m=0

χZ(m)∈W −
1

An + 1

An∑
m=0

χZ(m)∈W | ≤

| 1

θn + 1

θn∑
m=0

χZ(m)∈W |+ |
1

An + 1

An∑
m=0

χZ(m)∈W | ≤ 2,

then the dominated convergence theorem implies (5). From (5) we have

(7) E
1

θn + 1

θn∑
m=θ0

χZ(m)∈W → a, n→∞.

Let us prove that

(8) E
1

n+ 1

θn∑
m=θ0

χZ(m)∈W → aE(θ1 − θ0), n→∞.
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Note that E(θ1 − θ0) = lim
n→∞

E θn+1
n+1 , n → ∞ a.s. It follows from this statement and

(7) that

lim sup
n→∞

∣∣∣∣∣E 1

n+ 1

θn∑
m=θ0

χZ(m)∈W − aE(θ1 − θ0)

∣∣∣∣∣ =

lim sup
n→∞

∣∣∣∣∣Eθn + 1

n+ 1

1

θn + 1

θn∑
m=θ0

χZ(m)∈W −E
θn + 1

n+ 1
E

1

θn + 1

θn∑
m=θ0

χZ(m)∈W

∣∣∣∣∣ =

lim sup
n→∞

∣∣∣∣∣E
(
θn + 1

n+ 1
−E

θn + 1

n+ 1

)
1

θn + 1

θn∑
m=θ0

χZ(m)∈W

∣∣∣∣∣ ≤
lim sup
n→∞

E

∣∣∣∣θn + 1

n+ 1
−E

θn + 1

n+ 1

∣∣∣∣ = 0.

So (8) is proved.

Note that
θn∑

m=θ0

χZ(m)∈W =
n∑

m=1
σm.

Now we use the following analogue of the strong law of large numbers for the ran-
dom variables σm, that, generally speaking, are not identically distributed, but still are
independent.

Proposition 2. 1
n+1

n∑
m=1

(σm −Eσm)→ 0, n→∞, a.s.

Proof. Denote σ′m := σmχ{σm≤m}. Then using the fact that for each positive integer m,
0 ≤ σm ≤ θm−θm−1 a.s., and that the random variables θj−θj−1, j ≥ 1 are independent,
one can deduce that

(9)
1

n+ 1

n∑
m=1

(σ′m −Eσ′m)→ 0, n→∞, a.s.

The proof of (9) is similar to that of the classical Khinchine strong law of large numbers
(see [7], chapter 4, § 3, Theorem 3).

Further Eσm −Eσ′m = Eσmχ{σm>m} ≤ Eθ1χ{θ1>m} → 0, m→∞ by the dominated
convergence theorem. Hence,

(10)
1

n+ 1

n∑
m=1

(Eσ′m −Eσm)→ 0, n→∞.

Further∑
m≥1

P{σm > m} ≤
∑
m≥1

P{θm > m} =
∑
m≥1

P{θ1 > m} =
∑
m≥1

∑
l≥m

P{θ1 = l + 1} =

∑
l≥1

l∑
m=1

P{θ1 = l + 1} =
∑
l≥1

lP{θ1 = l + 1} ≤ Eθ1 <∞.

Thus, from the Borel-Cantelli lemma, a.s. there exists M = M(ω) such that for each
m ≥M : σm = σ′m.

Hence the sequence {
n∑

m=1
σm − σ′m}n≥1 is bounded almost surely, and therefore

(11)
1

n+ 1

n∑
m=1

σm − σ′m → 0, n→∞.
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Hence (9), (10) and (11) imply that almost surely

1

n+ 1

n∑
m=1

(σm −Eσm) =

1

n+ 1

(
n∑

m=1

(σm − σ′m) +

n∑
m=1

(σ′m −Eσ′m) +

n∑
m=1

(Eσ′m −Eσm)

)
→ 0, n→∞,

which completes the proof. �

So, from Proposition 2 1
n+1

n∑
m=1

(σm − Eσm) → 0, n→∞, hence (7) implies that a.s.

1
n+1

n∑
m=1

σm → aE(θ1 − θ0), n → ∞. Thus 1
θn+1

θn∑
m=0

χZ(m)∈W = n+1
θn+1

1
n+1

n∑
m=0

σm →

a, n→∞. Further, we proved, that a.s.

| 1

θn + 1

θn∑
m=0

χZ(m)∈W −
1

An + 1

An∑
m=0

χZ(m)∈W | → 0, n→∞,

and thus,

1

An + 1

An∑
m=0

χZ(m)∈W → a, n→∞.

Let MN be the biggest non-negative number, such that AMN
≤ N . Then |N−AMN

| ≤
E(θ1 − θ0) + 1. Further, repeating the transformations (6), we have that a.s.∣∣∣∣∣∣ 1

N + 1

N∑
k=0

χZ(k)∈W −
1

AMN
+ 1

AMN∑
k=0

χZ(k)∈W

∣∣∣∣∣∣ ≤
2
N −AMN

N + 1
≤ 2

E(θ1 − θ0) + 1

N + 1
→ 0, n→∞,

thus a.s. 1
N+1

N∑
k=0

χZ(k)∈W → a, N →∞, which completes the proof. �
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