
Theory of Stochastic Processes
Vol. 19 (35), no. 1, 2014, pp. 52–61

A. YU. PILIPENKO AND YU. E. PRYKHODKO

LIMIT BEHAVIOR OF A SIMPLE RANDOM WALK WITH

NON-INTEGRABLE JUMP FROM A BARRIER

Consider a Markov chain on Z+ with reflecting barrier at 0 such that jumps of

the chain outside of 0 are i.i.d. with mean zero and finite variance. It is assumed

that the jump from 0 has a distribution that belongs to the domain of attraction
of non-negative stable law. It is proved that under natural scaling of a space and a

time a limit of this scaled Markov chain is a Brownian motion with some Wentzell’s

boundary condition at 0.

Introduction

Consider a homogeneous Markov chain (X(k), k > 0) on Z with transition probabili-
ties

pi,j = P(ε = j − i), |i| > 0,

p0,j = P(ξ = j), j ∈ Z,
where Eε = 0,Dε = σ2 <∞, ξ is a random variable with values in Z.

We study a limit behavior of a sequence of processes

Xn =
(
Xn(t) = 1√

n
X
(
[nt]
)
, t > 0

)
, n ∈ N.

If the random variable ξ is integrable (see [1], [2], [3]), then {Xn} converges weakly
to σWγ , where Wγ is a skew Brownian motion, i.e., a continuous Markov process with
transition density

pt(x, y) = ϕt(x−y) + γ sign(y)ϕt(|x|+|y|), x, y ∈ R,

where ϕt(x) = 1√
2πt

e−x
2/2t is a density of N(0, t).

For example, if P(ε = ±1) = 1/2, then [1] parameter γ ∈ [0, 1] of a limit process Wγ

equals

γ =
Eξ

E|ξ|
.

We study a limit of a sequence {Xn} when ξ is non-integrable positive random variable
that belongs to a domain of attraction of a positive stable law with α ∈ (0, 1). A limit
process X is Markov, but discontinuous. Naturally, it should behave like a Wiener process
outside of 0 and the only points of discontinuity may be moments of hitting 0. More
precise, X will be a Wiener process with Wentzell’s boundary condition where a jump
measure µ(du) = u−(α+1)du has infinite variation. In this case the limit process a.s. has
infinitely many jumps in any neighbourhood of an instant when it hits 0.

Complete description of possible boundary conditions for diffusions was done by
Wentzell [4, 5]. Construction and investigation of the corresponding processes with non-
local boundary condition was done by different methods, including semigroup theory,
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stochastic differential equations, martingale problem, etc., see for ex. [6, 7, 8, 9, 10, 11,
12, 13, 14, 15].

Our proof of the main result is based on the Skorokhod representation theorem, con-
tinuous mapping theorem, and properties of some reflection problem with possibly jump-
type reflection.

1. Main results

Assume that a random variable ξ belongs to a domain of attraction of α-stable law
Uα on [0,∞), α ∈ (0, 1). That is, there exists a sequence {an} such that

(1) lim
n→∞

∑n
k=1 ξk
an

d
= Uα,

where {ξk, k > 1} are i.i.d. copies of ξ,

Ee−λUα = e−λ
α

, λ > 0.

It is known [16] that (1) yields a weak convergence of distributions of processes

(2)

∑[nt]
k=1 ξk
an

⇒ Uα(t), n→∞, in D([0,∞)),

where Uα(·) is α-stable process, i.e. a cadlag process with homogeneous independent
increments such that Uα(0) = 0 and

Ee−λUα(t) = e−λ
αt, t > 0, λ > 0.

Recall that Levy-Khinchine measure of Uα equals

µ(du) = cu−(α+1)du,

where c = α
Γ(1−α) .

Theorem 1.1. Let {X(k), k > 0} be a homogeneous Markov chain on Z+ such that

pij = P(ε = j − i), i > 1,

p0j = P(ξ = j),

where a random variable ε takes values in a set {−1, 0, 1, 2, . . . },

Eε = 0,Dε = σ2 ∈ (0,∞),

ξ takes values in N, and ξ belongs to a domain of attraction of α-stable law Uα on [0,∞),
α ∈ (0, 1).

Let a process {Xn(t), t > 0} has the same distribution as {X([nt])/
√
n, t > 0} given

X(0) = xn.

If xn/
√
nσ2 → x0, n→∞, then sequences {Xn} converges weakly in D([0,∞)) to the

process

X∞(t) := σW̃α(t) := σ
(
x0 +W (t) + Uα

(
U (−1)
α (M(t))

))
, t > 0,

where (W (t)) is a standard Wiener process, M(t) = −mins∈[0,t]

(
(x0 +W (s))∧0

)
, t > 0,

(Uα(t)) is a α-stable process, U
(−1)
α (t) = inf{s > 0: Uα(s) > t}, t > 0,

and processes (W (t)) and (Uα(t)) are independent.

Remark 1.1. If we take a random variable ξ̃ = mξ, m ∈ N, instead of ξ, then the limit
process for the sequence {Xn} will be the same.
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Remark 1.2. It follows from [17], §3 that W̃α satisfies the following martingale problem.
For any f ∈ C2([0,∞)) with a compact support such that∫ ∞

0

(f(u)− f(0))u−(α+1)du = 0,

a process

f(W̃α(t))− σ2

2

∫ t

0

f ′′(W̃α(s))ds

is a martingale. Moreover, using reasoning of [17] it can be shown that W̃α is a Markov

(and even strong Markov) process. Hence W̃α is a diffusion with generator A = σ2

2
∂2

∂x2 ,

where a core of A is C2
0 ([0,∞)) ∩ {g :

∫∞
0

(g(u) − g(0))u−(α+1)du = 0}. Existence of a
diffusion with such generator follows from [4], where all possible generators of diffusions
on an interval were described.

Remark 1.3. A non-negative random variable η belongs to the domain of attraction of
α-stable law on (0,∞) if and only if P(η > x) ∼ x−α`(x), x→ +∞, where ` is a slowly
varying function [18, § XIII.6].

Next result is a generalization of Theorem 1.1 to the case when X is a Makov chain
on {−m,−m+ 1, . . . ,−1} ∪ Z+ and a symmetry of a Markov chain is violated not only
at 0 but on {−m,−m+ 1, . . . , 0}.

Theorem 1.2. Let X be a Markov chain on {−m,−m + 1, . . . ,−1} ∪ Z+ such that all
states are connected and

pi,j = P(ε = j − i), i > 1,

where ε is from Theorem 1.1.
Put τ = inf{k > 1 : X(k) > 1}. Assume that a distribution of X(τ) given X(0) = 0,
belongs to a domain of attraction of a positive α-stable law with α ∈ (0, 1). Then the
distributions of {Xn, n > 1} constructed in Theorem 1.1 converge weakly in D([0,∞)) to

the distribution of the process σW̃α(t).

Remark 1.4. Denote F̄i(x) = P(X(1) > x/X(0) = i). Condition of Theorem 1.2 on
domain of attraction of α-stable law is satisfied if exists k > 1 and i1, ..., ik ∈ {1, . . . ,m}
such that

F̄i(x) = x−αli(x), x→∞, for i ∈ {i1, ..., ik},
and for other i

F̄i(x) = o(x−(α+δ)), x→∞,
where δ is a fixed positive number.

Remark 1.5. We conjecture that the limit in Theorem 1.2 is σW̃α(t) if we replace condi-
tion ε > −1 by boundedness of ε from below.

By pαt (x, y) denote a transition density of a process W̃α constructed in Theorem 1.1

(it is not difficult to show that this density exists). Let p
(0)
t (x, y) be a transition density

of a Brownian motion killed at zero: p
(0)
t (x, y) = (ϕt(x − y) − ϕt(x + y))1lxy>0, where

ϕt(x) = 1√
2πt

e−x
2/2t. Theorem 1.2 and the same reasoning as in a proof of the Andre

reflection principle yields the following result.

Theorem 1.3. Assume that X(k), k > 0 is a Markov chain on Z such that
1) pi,i±1 = 1/2, |i| > 1,
2) p0,j = βP(ξ = j), p0,−j = (1− β)P(ξ = j), j > 1,
where β ∈ [0, 1], and random variable ξ belongs to a domain of attraction of a positive
α-stable law with α ∈ (0, 1).
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Then the distributions of the sequence {Xn(t) = 1√
n
X
(
[nt]
)
, t > 0}n>1 converge weakly

in D([0,∞)) to the distribution of a Markov process W̃α,β(t) with a transition density

p̃α,βt (x, y) = p
(0)
t (x, y) + 1+(2β−1) sign(y)

2

(
pαt (|x|, |y|)− p(0)

t (|x|, |y|)
)
, x, y ∈ R.

Remark 1.6. By analogy with a skew Brownian motion, the process W̃α,β(t) can be called
“the skew Brownian motion with α-stable boundary condition at 0”.

2. Proof of Theorem 1.1

2.1. Generalization of the Skorokhod reflecting problem. We need the following
generalization of Skorokhod’s reflecting problem (see for ex. [17]).

Let f ∈ D([0,∞)) be increasing function, f(0) = 0, and w ∈ C([0,∞)), w(0) > 0.
Consider an equation with respect to a pair of unknown functions (X,L):

(3) X(t) = w(t) + f(L(t)), t > 0,

where X(t) > 0 for t > 0, a function L is continuous and non-decreasing, L(0) = 0, and∫ t

0

1lX(s)=0dL(s) = L(t), t > 0.

This system will be called W (w, f) reflecting problem.

Theorem 2.1 ([17]). Assume that limx→∞ f(x) =∞. Then there exists a unique solu-
tion to the problem (3). Moreover

L(t) = f (−1)(− min
s∈[0,t]

(w(s) ∧ 0)), t > 0,

i.e.
X(t) = w(t) + f

(
f (−1)(− min

s∈[0,t]
(w(s) ∧ 0))

)
, t > 0,

where f (−1)(x) = inf{y > 0: f(y) > x}, x > 0.

Remark 2.1. Reflection problem for f(x) = x was originally introduced by A.V.Skorokhod
in [19]. If f is arbitrary continuous increasing function, f(0) = 0, then f

(
f (−1)(x)

)
=

x, x > 0, and X (but not L) coincides with the solution of the Skorokhod reflection
problem with f(x) = x.

Remark 2.2. Let f̃(x) = f(Cx), where C > 0, and (X̃, L̃) be the solution of W (w, f̃).

Then X̃(t) = X(t), L̃(t) = L(t)/C.

2.2. Construction of a copy of Markov chain X as a solution of reflection
problem. In this section we associate a distribution of X with a solution of a reflection
problem for some random walk. We will assume for simplicity that all xn = 0. The proof
of the general case leaves the same, but we would need always add some initial terms.

Let (S(k), k > 0) be a random walk on Z with jumps that have the same distribution
as ε. Extend S for all t > 0 continuously by linearity:

S(t) = S([t]) + (t− [t])
(
S([t] + 1)− S([t])

)
, t > 0.

Consider a reflecting problem W (S, F ) :

(4) X̃(t) = S(t) + F (L(t)), t > 0,

where

F (x) = x+

[x]∑
k=1

(ξk − 1), x > 0,

{ξk, k > 1} are i.i.d.r.v. with the same distribution as ξ and are independent of S.
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It follows from Theorem 2.1 that there exists a unique solution X̃ of (4), and

L(t) = F (−1)(− min
s∈[0,t]

(S(s) ∧ 0)), t > 0,

where F (−1)(x) = inf{y > 0: F (y) > x}, x > 0.
It is easy to see that L(·) is continuous and non-decreasing piece-wise linear process

such that

either L(t) = L(k), or L(t) = L(k) + (t− k) for all t ∈ [k, k + 1].

In particular,

L(k + 1)− L(k) ∈ {0, 1}, k ∈ N.
By (ti, i > 1) denote points of growth of the function L([t]), t > 0. Note that ti

may take only integer values, X̃(t) jumps only when t = ti for some i. This means that

X̃(t) = 0, t ∈ [ti − 1, ti), Sti − Sti−1 = −1, X̃(ti) = ξi − 1, and

(5) L(k) = i for k = ti, ti+1 − 1.

Put

X̄(k) := 1 + X̃(k), k = 0, t1−1,

X̄(t1) := 0.

Further define X̄ by a recursion

X̄(k + i) := 1 + X̃(k), k = ti+1, ti+1−1,

and X̄(ti+1 + i) := 0.

Taking into account (5), a construction of X can be described as follows

X̄(k + L(k)) = 1 + X̃(k), k > 0,

X̄(ti + L(ti)− 1) = 0, i > 1.

It can be easily verified that distributions of the sequence (X̄(k), k ∈ Z+) and Markov
chain (X(k), k ∈ Z+) coincide.

To prove Theorem 1.1 it suffices to verify that X̄n ⇒ X∞ as n→∞, where X̄n(t) =
1√
n
X̄([nt]), t > 0, n ∈ N.

Put

X̃n(t) =
1√
n
X̃(nt),

λ(t) := t+
∑
k6t

1lX̄(k)=0.

Then

X̃([t]) = X̄(λ([t]))− 1, t > 0,

and

(6) X̃n

(
[nt]

n

)
=
X̃([nt])√

n
=
X̄(λ([nt]))− 1√

n
= X̄n

(
λ([nt])

n

)
− 1√

n
.

Now the proof of the Theorem is as follows. First we prove that X̃n ⇒ X∞ as n → ∞
in D([0,∞)). Secondly we show that for any T > 0

(7) sup
t∈[0,T ]

|λ([nt])

n
− t| → 0, n→∞,

in probability, and then complete the proof with some minor details.
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2.3. Passage to the limit. It follows form (4) that

(8) 1√
n
X̃(nt) = 1√

n
S(nt) + 1√

n
F (L(nt)), t > 0, n ∈ N.

It is well known that distributions of a sequence(
Sn(t) = 1√

n
S(nt), t > 0

)
, n ∈ N,

converge weakly in C([0,∞)) to a distribution of a Wiener process (Donsker’s theorem,
see for ex. [20])

(9) Sn(t)⇒ σW (t), n→∞, in C([0,∞)).

Consider a limit behavior of the second term in (8).
Recall that,

F (x) = x+

[x]∑
n=1

(ξk − 1), x > 0,

where a distribution of random variables ξk belongs to a domain of attraction of the
distribution Uα. Then, see (2), there exists a sequence {an} such that

F (nt)

an
⇒ Uα(t), n→∞,

in D([0,∞)).
Take k(n) := inf{k : ak >

√
n}. Then an → ∞ and an+1

an
→ 1 as n → ∞ (see [18,

§VIII.3, Lemma 3]). So

(10)
ak(n)√
n
→ 1, n→∞.

Hence
F (k(n)t)

ak(n)
⇒ Uα(t), n→∞, in D([0,∞)).

Therefore (10) yields

(11) Fn(t) := 1√
n
F (k(n)t)⇒ Uα(t), n→∞, in D([0,∞)).

Taking into account Remark 2.2, the process X̃n(t) = 1√
n
X̃(nt) from reflection prob-

lem (8) coincides with a solution of the reflection problem

X̃n(t) = Sn(t) + Fn(Ln(t)), t > 0,

and

(12) Ln(t) = L(nt)/k(n).

We need the following result on a continuity of a solution of reflection problem W (w, f)
on functions f and w.

Proposition 2.1. Let {wn, n > 0} ⊂ C([0,∞)), {fn, n > 0} ⊂ D([0,∞)) be increas-
ing functions such that fn(0) = 0, limx→∞fn(x) = +∞, and (Xn, Ln) be solutions of
W (wn, fn), n > 0.
Assume that
1) fn → f0, n→∞ in D([0,∞));
2) wn → w0, n→∞ in C([0,∞));
3) if t̂ is a point of discontinuity of a function f0, then equation (with respect to the
variable t ≥ 0)

(13) − min
s∈[0,t]

(w0(s) ∧ 0) = f0(t̂− 0),

has at most one solution.
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Then
Xn → X0, n→∞, in D([0,∞)),

and
Ln → L0, n→∞, in C([0,∞)).

The proof follows from [17, Corollaries 1 and 2].
Let us continue the proof of Theorem 1.1.
By Skorokhod’s representation theorem [21, §I.6], (9) and (11), there exists a single

probability space that contains copies Ŝn, Ŵ , F̂n, Ûα of processes Sn, W , Fn and Uα,
such that convergence with probability 1 holds

Ŝn → σŴ as n→∞ in C([0,∞)) a.s.,

and
F̂n → Ûα as n→∞ in D([0,∞)) a.s.

Note that Sn and Fn are independent, so Ŝn and F̂n are independent.
Let us apply Proposition 2.1 to the process σŴ as w0 and Ûα as f0.
Equation (13) takes a form

−σ min
s∈[0,t]

(Ŵ (s) ∧ 0) = Ûα(tk − 0),

where Ŵ is a Wiener process, {tk, k > 1} are points of discontinuity of Ûα(·).
Since Ŵ and Ûα are independent, the last equation has at most one solution with

probability 1.
Thus we have the following convergence on some probability space

(14) X̂n → X̂∞ as n→∞ in D([0,∞)) a.s.,

where X̂n, X̂∞ are solutions of the reflection problems

X̂n(t) = Ŝn(t) + F̂n(L̂n(t)), t > 0,

X̂∞(t) = Ŵ (t) + Ûα(L̂∞(t)), t > 0.

From Theorem 2.1,

X̂∞(t) = σŴ (t) + Ûα
(
Û (−1)
α (−σ min

s∈[0.t]
(Ŵ (s) ∧ 0)

)
, t > 0.

It can be easily seen that the processes
(
Ûα
(
Û

(−1)
α (σt)

)
, t > 0

)
and

(
σÛα

(
Û

(−1)
α (t)

)
, t >

0
)

have the same distribution. Since Ûα and Ŵ are independent, the distribution of

X̂∞(t), t ≥ 0, coincides with the distribution of

σ

(
Ŵ (t) + Ûα

(
Û (−1)
α (− min

s∈[0.t]
(Ŵ (s) ∧ 0))

))
, t > 0.

Observe that

|X̂n

(
[nt]

n

)
− X̂n(t)| ≤ 1√

n
.

So (14) yields the convergence

X̂n

(
[nt]

n

)
→ X̂∞(t) as n→∞, in D([0,∞)) a.s.

Hence, see (6),

(15) X̄n

(
λ([nt])

n

)
⇒ X̂∞(t), n→∞, in D([0,∞)).

The following statement can be easily proved from the definition of convergence in a
Skorokhod space, cf. [20, § 14].
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Proposition 2.2. Let {fn, n > 0} ⊂ D([0,∞)). Assume that a sequence of non-negative
non-decreasing cadlag functions {λn, n > 1} is such that

∀T > 0 : lim
n→∞

sup
t∈[0,T ]

|λn(t)− t| → 0,

fn(λn(t))→ f(t), n→∞, in D([0,∞)).

Let {t(n)
k } be the set of jumps of λn, u

(n)
k := λn(t

(n)
k −), v

(n)
k := λn(t

(n)
k ).

If for any T > 0

(16) sup
k

sup
s∈[u

(n)
k ,v

(n)
k )∩[0,T ]

|fn(s)− fn(u
(n)
k )| → 0, n→∞,

then

fn → f, n→∞, in D([0,∞)).

Taking into account (15) and Proposition 2.2, to prove Theorem 1.1 it suffices to verify
(7).

We have

sup
t∈[0,T ]

∣∣∣∣λ([nt])

n
− t
∣∣∣∣ 6 1

n

∑
k6nT

1lX̄(k)=0 +
1

n
.

Observe that
∑
k6nT 1lX̄(k)=0 6 L(nT ) and a sequence Ln(T ) = L(nT )/k(n) is weakly

convergent by Proposition 2.1. Since n ∼ aαn`(an), n → ∞, [18, § XIII.6], where ` is a
slowly varying function, and

ak(n)√
n
→ 1, n→∞ (see (10)), we have k(n)/n→ 0, n→∞.

Therefore L(nT )/n converges to 0 weakly and hence in probability. We have verified
(7). Theorem 1.1 is proved.

3. Proof of Theorem 1.2

We will assume that all xn = 0. The general case is considered similarly.
Let a random variable ξ have a distribution X(τ) given X(0) = 0 :

P(ξ = j) = P(X(τ) = j/X(0) = 0).

By τk denote the lengths of the excursion that starts at the instant of kth visit of X to
the set {−m,−m+ 1, . . . , 0} and finishes at the instant of exit from this set.

Consider a process X̃ constructed in §2.2. A copy of a process X can be constructed

from a process X̃ inserting excursions of lengths {τ̃k}, where {τ̃k} are copies of {τk}.
This excursions describe behavior of X inside the set {−m,−m + 1, . . . , 0}. Denote the
constructed copy of X by X̄.

Remark 3.1. Random variables {τ̃k} are i.i.d., but they may depend on X̃.

Similarly to reasoning of previous section we have representation (6) with

λ(t) := t+
∑
k6t

1lX̄(k)60.

Observe that
∑
k6nT 1lX̄(k)60 6

L(nT )∑
k=1

τ̃k. Since all states of initial Markov chain are

connected, the average time spent in the set {−m,−m+ 1, . . . , 0} until the exit from it
is finite:

M := Eτ̃k <∞.
By the strong law of large numbers

n∑
k=1

τ̃k/n→M, n→∞, a.s.
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Since L(nT )/n→ 0, n→∞, in probability,

L(nT )∑
k=1

τ̃k/n→ 0, n→∞,

in probability.
Condition (16) of Proposition 2.2 is satisfied, the corresponding supremum does not

exceed (m+ 1)/
√
n. The rest of the proof is the same as in Theorem 1.1.
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