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WEAK CONVERGENCE THEOREM FOR THE ERGODIC
DISTRIBUTION OF THE RENEWAL-REWARD PROCESS WITH A

GAMMA DISTRIBUTED INTERFERENCE OF CHANCE

In this study, a renewal-reward process with a discrete interference of chance (X(t))
is investigated. The ergodic distribution of this process is expressed by a renewal
function. We assume that the random variables {ζn}, n ≥ 1 which describe the
discrete interference of chance form an ergodic Markov chain with the stationary
gamma distribution with parameters (α, λ), α > 0, λ > 0. Under this assumption, an
asymptotic expansion for the ergodic distribution of the stochastic process Wλ (t) =
λ(X(t) − s) is obtained, as λ → 0. Moreover, the weak convergence theorem for
the process Wλ (t) is proved, and the exact expression of the limit distribution is
derived. Finally, the accuracy of the approximation formula is tested by the Monte-
Carlo simulation method.

1. Introduction

It is known that numerous interesting problems of queuing, inventory and reliability
theories, mathematical insurance, financial mathematics, mathematical biology, physics,
etc. are expressed by means of stochastic processes with a discrete interference of chance,
especially by means of the random walk and the renewal-reward processes. There are
many interesting studies on these topics in the literature (see, for example, [1]-[10]).

There are also many studies on the asymptotic behavior of characteristics of the
renewal-reward processes. For instance, in [7], Jewell studied the fluctuations of a
renewal-reward process embedded in the renewal process. In [2], Brown and Solomon
considered the following renewal-reward process with absolutely continuous component:

C(t) =

{
0 , t < X0∑N(t)−1
k=0 Yk , t ≥ X0

,

where N(t) = min{k : Sk > t}, Sn =
∑n
i=0Xi, n = 0, 1, 2, . . .; {Xi, i = 0, 1, 2, . . .}

is a renewal sequence, and {(Xi, Yi), i = 0, 1, 2, . . .} is a sequence of independent and
identically distributed random vectors. In [2], Brown and Solomon obtained the second-
order asymptotic expansions for the first and second moments of the renewal-reward
process C(t). Note that the renewal-reward process C(t) occurs in various stochastic
optimization models, particularly in Markov and semi-Markov decision models. In these
models, Yi represents the reward or cost associated with a given policy over the renewal
interval (Si−1, Si].

Another important problem in this area is considered in [1] by Alsmeyer. He considered
the extended renewal process {(Sn, Un}n≥0, where

Sn =
n∑
i=0

Xi, Un =
n∑
i=0

Yi.
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Under appropriate conditions on two-dimensional random vectors (Xi, Yi), i ≥ 0, the
asymptotic expansions for EUT (t), V arUT (t) and Cov(UT (t), T (t)) are obtained, as t →
∞, where T (t) = inf{n ≥ 0 : Sn > t}. The corresponding results for EUN(t), V arUN(t)

and Cov(UN(t), N(t)) are obtained, when X0, X1 are both almost surely non-negative
and

N(t) = sup{n ≥ 0 : Sn ≤ t}.
One of the most used application areas of the aforementioned renewal-reward process
is insurance theory. In collective risk problems, the random variables X1, X2,. . . are
interpreted as the time between claims; Y1, Y2,. . . are interpreted as the corresponding
claim amounts; N(t), t ≥ 0 denotes the number of claims up to time t, and UN(t) denotes
the total value of claims made till the time t by the insurance company (see, for example,
[10]).

In [3], Csenki derived an asymptotic representation for the expected value of renewal-
reward processes with retrospective reward structure.

Recently, the heavy-tailed distributions have been used in the renewal-reward pro-
cesses. For example, in [6], Levy and Taqqu investigated renewal-reward processes with
heavy-tailed inter-renewal times and heavy-tailed rewards. In their paper, both the
inter-renewal times and the rewards were allowed to have infinite variance.

In the studies mentioned above, generally, the first two moments of the renewal-reward
processes were obtained. But, in [8], Khaniyev obtained the third-order asymptotic
expansions as t→∞ for the first four moments of the generalized renewal-reward process.

Many of the authors mentioned earlier derived asymptotic expansions for the moments
of a renewal-reward process. But, in order to solve some practical and theoretical prob-
lems, the ergodic distribution of the renewal-reward process with a discrete interference
of chance is needed. The basic aim of this study is to prove the weak convergence theorem
for the ergodic distribution of this process.

Let us consider the following inventory model before expressing the problem mathe-
matically.

The model. Assume that the stock level in a depot at the initial time (t = 0) is equal
to X(0) ≡ X0 ≡ s+ v, where 0 < s <∞ represents the stock control level and v > 0. In
addition, it is assumed that, at random times T1, T2,. . . , Tn,. . ., the stock level (X(t))
in the depot decreases by η1, η2,. . . , ηn,. . . ., respectively, until the stock level X(t) falls
below the predetermined control level s. Thus, the stock level in the depot changes as
follows:

X(T1) ≡ X1 = s+ v − η1, X(T2) ≡ X2 = s+ v − (η1 + η2), . . . ,

(1) X(Tn) ≡ Xn = s+ v −
n∑
i=1

ηi,

where ηn represents the quantity of the nth demand, n = 1, 2, 3, . . ..
In other words, demands are inserted to the system at the random times

Tn =
n∑
i=1

ξi,

where ξn represents the time between (n − 1)th and nth demand, n = 1, 2, 3, . . .. The
system passes from one state to another by jumping at time Tn, according to the quanti-
ties of demand {ηn}, n � 1 as shown in Eq. (1). This variation of the system continues
up to a certain random time τ1, where τ1 is the first time that the stock level X(t) drops
below the control level s > 0. When this occurs, the system is immediately brought to
the state s + ζ1, where ζ1 ∈ [0,∞). Thus, the first period completes, and the second
one starts. Afterwards, the process X(t) continues to change from the new initial state
s+ ζ1, similar to the way it changed in the first period. When the stock level X(t) falls
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below s, for the second time, by an interference to the system, the stock level is brought
to the random level s + ζ2, similar to the preceding period, and so on. Here, ζ1, ζ2,. . .
are independent and identically distributed positive-valued random variables.

In this study, a stochastic process which describes the model mentioned above is
constructed and investigated. In this case, the distribution of interference will be chosen
from a narrow but important class of distributions. Namely, we will assume that the
random variables {ζn}, n ≥ 1 which describe the discrete interference of chance form an
ergodic Markov chain with the stationary gamma distribution with parameters (α, λ),
α > 0, and λ > 0. Under this assumption, we aim to investigate the asymptotic behavior
of the process Wλ (t) ≡ λ(X(t) − s), as λ → 0. Moreover, we will prove the weak
convergence theorem for the ergodic distribution of the process Wλ (t). Finally, the
accuracy of the approximation formula obtained in this study is tested by the Monte-
Carlo simulation method.

2. Mathematical construction of the process X(t)

Let {ξn} and {ηn}, n ≥ 1 be two independent sequences of random variables defined on
any probability space (Ω,�, P ), such that the variables in each sequence are independent
and identically distributed. We introduce also the sequence of random variables {ζn}, n ≥
1 which describes the discrete interference of chance and form an ergodic Markov chain
with the stationary gamma distribution with parameters (α, λ), α > 0, λ > 0. Suppose
that ξi’s and ηi’s take only positive values. We denote their distribution functions by
Φ(t) and F (x) respectively. So,

Φ(t) = P{ξ1 ≤ t}, t > 0; F (x) = P{η1 ≤ x}, x > 0.
Using the initial sequences of the random variables {ξn} and {ηn}, we define the

renewal sequences {Tn}, {Sn} and their distribution functions as follows:

Tn =
n∑
i=1

ξi, Sn =
n∑
i=1

ηi, T0 = S0 = 0, n ≥ 1,

Φn(t) = P{Tn ≤ t}, Fn(x) = P{Sn ≤ x},
Moreover, we define the sequence of integer-valued random variables {Nn}, n ≥ 0, as

follows:

N0 = 0, N1 = N(v) = inf{k ≥ 1 : Sk > v}, v ≥ 0;

Nn+1 ≡ Nn+1(ζn) = inf{k ≥ Nn + 1 : s+ ζn − Sk + SNn < s}

= inf{k ≥ Nn + 1 : Sk − SNn > ζn}, n ≥ 1,

where inf(∅) = +∞ is stipulated.
Put

τ0 = 0; τ1 = TN1 =
N(v)∑
i=1

ξi; τn+1 ≡ τn+1(ζn) = TNn+1 =
Nn+1∑
i=1

ξi, n ≥ 1,

and define ν(t) as

ν(t) = max{n ≥ 0 : Tn ≤ t}, t > 0.

We can now construct the desired stochastic process X(t) as
X(t) = s+ ζn − Sν(t) + SNn , if τn ≤ t < τn+1, n ≥ 0,

where ζ0 = s+ v and Sν(τn+0) = SNn .
We call the process X(t) as the ”renewal-reward process with a gamma distributed

interference of chance”. Figure 1 gives a trajectory of the process X(t).
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Figure 1: A trajectory of the process X(t).

3. Preliminary Discussions

To investigate the stationary characteristics of the considered process X(t), it is nec-
essary to prove that X(t) is ergodic. This property can be expressed by the following
proposition.

Proposition 3.1. Let the initial sequences of the random variables {ξn}, {ηn} and
{ζn} , n ≥ 1, satisfy the following additional conditions:

1) Eξ1 <∞;
2) m2 = E(η2

1) < +∞;
3) η1 is a non-arithmetic random variable;
4) the sequence of the random variables {ζn} , n ≥ 1 , which describes the discrete

interference of chance forms an ergodic Markov chain having the gamma distribution
with the parameters (α, λ), α > 0, λ > 0 as the stationary distribution of a chain.

Then the process X(t) is ergodic.
Proof. The process X(t) belongs to a wide class of processes which is known in the
literature as ”the class of semi-Markov processes with a discrete interference of chance”.
The ergodic theorem of the type of Smith’s “key renewal theorem” exists in the literature
for this wide class (see, [5], p. 243). By this theorem, it is necessary and sufficient to
verify the following assumptions:

Assumption 3.1. It is required to choose a sequence of ascending random times such
that the values of the process X(t) at these times form an imbedded Markov chain which
is ergodic and has a stationary distribution.

For this aim it suffices to consider the sequence of the random times {τn} , n ≥ 0,
which is defined in the section 2. On the other hand, the values of the process X (t) at
these times ζn = X(τn+0), n ≥ 1 form an imbedded Markov chain. Since, ζn, n ≥ 1 are
identically distributed random variables then imbedded Markov chain

{X(τn + 0)} , n ≥ 1
is ergodic with a stationary distribution

dπ (v) =
λα

Γ(α)
vα−1e−λvdv, v ≥ 0.

Therefore, the first assumption of the general ergodic theorem is satisfied.

Assumption 3.2. The mathematical expectation of a time interval between successive
Markov moments {τn} , n = 1, 2, 3, . . ., must be finite, i.e., for every n = 1, 2, 3, . . .,
(2) E(τn − τn−1) <∞.
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Since
τn − τn−1, n = 2, 3, . . . ,

are independent and identically distributed random variables, condition (2) holds if the
integral

(3) E(τ1) ≡
∫ ∞

0

Ev(τ1)dπ(v)

is finite. On the other hand, by using Wald’s identity (see, [4], p.601), we have

(4) Ev(τ1) = E(
N(v)∑
i=1

ξi) = E(ξ1)E(N(v)) = E(ξ1)Uη(v).

Here, Uη(v) is a renewal function generated by the sequence of random variables {ηn}.
Therefore,

(5) E(τ1) = E(ξ1)
∫ ∞

0

Uη(v)dπ(v).

Remember that 0 < E(ξ1) <∞. In this case, condition (2) holds, if the integral

(6)
∫ ∞

0

Uη(v)dπ(v)

is finite.
It is known that the renewal function Uη(v) is finite for every 0 < v < +∞ (see, [4]).

But, in our case, it is not sufficient that Uη(v) < +∞ for every 0 < v < +∞. In addition,
it is necessary to show that the relation

(7) EUη(ζ1) =
∫ ∞

0

Uη(v)dπ(v) < +∞

is valid. In other words, we must show

(8) EUη(ζ1) =
λα

Γ(α)

∫ ∞

0

Uη(v)vα−1e−λvdv < +∞.

By the conditions of Proposition 3.1, the second moment of the random variable η1 is
finite, i.e., E(η2

1) <∞. In this case, by a sharper form of the renewal theorem (see, [4])
as v →∞, we have

(9) Uη(v) =
v

m1
+

m2

2m2
1

+ g(v).

Here, the function g(v) tends to zero as v →∞, i.e.,
lim
v→∞ g(v) = 0.

For this reason, for every ε > 0, it is possible to find the number b ≡ b(ε) such that
0 < b(ε) < +∞, and, for every v ≥ b(ε),
(10) |g(v)| < ε

2
.

The expression in (8) can be written as follows:

EUη(ζ1) =
λα

Γ(α)

∫ b(ε)

0

Uη(v)vα−1e−λvdv

(11) +
λα

Γ(α)

∫ ∞

b(ε)

Uη(v)vα−1e−λvdv ≡ J1(ε) + J2(ε).

Since the function Uη(v) is monotone non-decreasing, the inequality
Uη(v) ≤ Uη(b(ε)) < +∞

is true for every v ≤ b(ε). Therefore,

J1(ε) ≡
λα

Γ(α)

∫ b(ε)

0

Uη(v)vα−1e−λvdv
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(12) ≤ Uη(b(ε))
λα

Γ(α)

∫ b(ε)

0

vα−1e−λvdv ≤ Uη(b(ε)).

On the other hand, from the definition of the number b(ε), we have

(13) Uη(b(ε)) ≤
b(ε)
m1

+
m2

2m2
1

+
ε

2
.

Hence, relations (12) and (13) yield the following inequality:

(14) J1(ε) ≤
b(ε)
m1

+
m2

2m2
1

+
ε

2
.

Now, we estimate the second term in (11):

J2(ε) ≡
λα

Γ(α)

∫ ∞

b(ε)

Uη(v)vα−1e−λvdv ≤ λα

m1Γ(α)

∫ ∞

b(ε)

vα−1e−λvdv

(15) +(
m2

2m2
1

+
ε

2
)
λα

Γ(α)

∫ ∞

b(ε)

vα−1e−λvdv ≤ α

λm1
+

m2

2m2
1

+
ε

2
,

where Γ(α) =
∫∞
0
tα−1e−tdt is the Euler’s gamma function.

In view of (14) and (15), relation (11) yields

(16) EUη(ζ1) ≡ J1(ε) + J2(ε) ≤
α

λm1
+
b(ε)
m1

+
m2

2m2
1

+ ε.

Under the condition of Proposition 3.1, m1 > 0, and m2 ≡ E(η1)2 < ∞ holds. On
the other hand, 0 < α < ∞, 0 < λ < ∞, and, for each ε > 0, the number b(ε) is finite,
i.e., b(ε) <∞. Therefore, from (16), we have
(17) EUη(ζ1) <∞.

So, E(τ1) <∞ is proved. It is shown that Assumption 2 is satisfied.

In this case, under the conditions of Proposition 3.1, the conditions of the general
ergodic theorem are satisfied. Therefore, the process X(t) is ergodic.

This completes the proof of Proposition 3.1. �
Note. According to the general ergodic theorem, when the conditions of Proposition
3.1 are satisfied, the time averaging of the process X(t) converges to the phase averaging
with probability 1 as t→∞ (see, for example, [5], p. 243). This property of the process
X(t) can be given by the following proposition.

Proposition 3.2. Under the conditions of Proposition 3.1, the following relation is
correct with probability 1 for each measurable bounded function f(x) (f : [s,+∞)→ R):

(18) lim
t→∞

1
t

∫ t

0

f(X(u))du = Sf ≡
∫∞
s

∫∞
0 f(x) [Uη(v)− Uη(s+ v − x)] dπ(v)dx∫∞

0 Uη(v)dπ(v)
,

where Uη(x) =
∑∞
n=0 Fn(x) is the renewal function generated by the sequence {ηn},

n ≥ 1, and π(v) is a stationary distribution of the Markov chain {ζn}, n ≥ 1.
Proof. According to the general ergodic theorem for the semi-Markov processes with
a discrete interference of chance (see, [5], p.243), the following expression is correct
with probability 1 for any bounded measurable function f(x), when the conditions of
Proposition 3.1 are satisfied:

(19) Sf =
1

E(τ1)

∫ ∞

0

∫ ∞

0

∫ ∞

s

f(x)Ps+v {τ1 > t; X(t) ∈ dx} dtdπ(v).

We now introduce the notation G (t, x, v) ≡ Ps+v{τ1 > t;X (t) ≤ x} for the sake of
brevity. In this case, the following equality can be written:

(20) G(t, x, v) ≡ Ps+v {τ1 > t; X(t) ≤ x} =
∞∑
n=0

ΔΦn(t) [Fn(v)− Fn(s+ v − x)] .
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Here, ΔΦn(t) = Φn − Φn+1; Φn(t) = P{Tn ≤ t}, Fn(x) = P{Sn ≤ x}.
First, applying the Laplace transformation to (20) with respect to the parameter t

and taking the limit of both sides of Eq. (20) with respect to the parameter λ, as λ→ 0,
we obtain
(21) lim

λ→0
G̃(λ, x, v) = Eξ1 [Uη(v)− Uη(s+ v − x)] ,

where G̃(λ, x, v) denotes the Laplace transform of the function G(t, x, v), and Uη (x) is a
renewal function generated by the distribution of the random variable η1, i.e., Uη(x) =∑∞

n=0 Fn(x), where the function Fn(x) represents the nth convolution multiplication of
F (x).

On the other hand, since τ1v =
∑N(v)
i=1 ξi, the following identity can be written:

E(τ1v) = E(ξ1)E(N(v)) = E(ξ1)Uη(v).
Then

(22) E(τ1) = E(ξ1)
∫ ∞

0

Uη(v)dπ(v) = E(ξ1)E(Uη(ζ1)).

Therefore, if expressions (21) and (22) are taken into account in equality (9), result
(8) can be obtained. This completes the proof of Proposition 3.2. �

Note. If the indicator function is used instead of a function f(x) in Proposition 3.2,
the following exact formula can be written for the ergodic distribution function (QX(x))
after the corresponding calculations:

(23) QX(x) = 1− EUη(ζ1 + s− x)
EUη(ζ1)

, x ∈ [s,∞) .

For a detailed study, we now introduce the notation X̄ (t) ≡ X (t)− s. We can write
the ergodic distribution function (QX̄(x)) of the process X̄ (t) as follows:

(24) QX̄(x) = 1− EUη(ζ1 − x)
EUη(ζ1)

.

Using this formula, it is possible to obtain an exact expression for the ergodic dis-
tribution of the process X̄ (t), when the random variable η1 has a certain well-known
distribution (for example, exponential, Erlang, etc.).

Example 3.1. Let the conditions of Proposition 3.1 be satisfied. Moreover, we assume
that the random variable η1 has an exponential distribution with parameter μ > 0. Then
the ergodic distribution function (QX̄(x)) of the process X̄ (t) can be expressed as follows:

(25) QX̄(x) = 1− μx

λ+ αμ
gα,λ(x) +

(
1− λμx

λ+ αμ

)
(1−Gα,λ (x)) ,

where gα,λ(x) = λα

Γ(α)x
α−1e−λx, Gα,λ (x) = λα

Γ(α)

∫ x
0 v

α−1e−λvdv,

Γ(α) =
∫∞
0 xα−1e−xdx is the Euler′s gamma function.

Example 3.2. Let the conditions of Proposition 3.1 be satisfied. Moreover, we assume
that the random variable η1 has the second-order Erlang distribution with parameter
μ > 0. Then the ergodic distribution function (QX̄(x)) of the process X̄ (t) can be
expressed as follows:

QX̄(x) = 1− c
[μx
2λ
gα,λ(x) +

(μα
2λ

+
3
4
− μx

2

)
(1−Gα,λ(x))

(26) +
e2μx

4

( λ

λ+ 2μ

)α
(1−Gα,λ+2μ(x))

]
,

where Gα,λ+2μ(x) = (λ+2μ)α

Γ(α)

∫ x
0 v

α−1e−(λ+2μ)vdv, c = 4λ(λ+2μ)α

(λ+2μ)α(3λ+2μα)+λα+1 .



WEAK CONVERGENCE THEOREM FOR THE ERGODIC DISTRIBUTION 49

Indeed,

EUη(ζ1 − x) =
μ

2
λα−1

Γ(α)
xαe−λx +

(μ
2
α

λ
+

3
4
− μ

2
x
)
(1 −Gα,λ(x))

(27) +
e−2μx

4

( λ

λ+ 2μ

)α
(1−Gα,λ+2μ(x)) .

Using a similar method, we have

(28) EUη(ζ1) =
μ

2
α

λ
+

3
4

+
1
4

( λ

λ+ 2μ

)α
.

Finally, substituting expressions (27) and (28) in (24) and carrying out the correspond-
ing calculations, we obtain (26). �
Remark 3.1. As seen from Examples 3.1 and 3.2, the exact expression of the ergodic
distribution of the process can be extremely complex even in simple cases. In addition,
when the distribution of the random variable η1 is different from the exponential or
Erlang distribution, to find the clear form of the renewal function Uη (x) becomes a very
complex problem. Thus, it is advisable to derive an approximate formula for the ergodic
distribution which is simpler than the exact formula. Therefore, in the following section,
we will try to obtain an asymptotic expansion for the ergodic distribution.

4. Asymptotic expansion and the weak convergence theorem for the

ergodic distribution of the process Wλ(t)

In this section, our aim is to obtain an asymptotic expansion and to prove the weak
convergence theorem for the ergodic distribution of the process Wλ(t) ≡ λ(X(t)− s), as
λ→ 0. For this purpose, we prove the following auxiliary lemma:

Lemma 4.1. Let g(x) (g : R+ → R) be the bounded function, and lim
x→∞ g(x) = 0. Then,

for all α > 0, the following relation is true:

(29) lim
λ→0

∫ ∞

0

tα−1e−tg(
t

λ
)dt = 0.

Proof. Under the conditions of Lemma 4.1, for each ε > 0, there exists m(ε) > 0 so
that, for every x > m(ε), the inequality |g(x)| < ε holds. Choose b > 0 such that∫ b
0
tα−1e−tdt < ε. The function g(x) is bounded. Therefore, for each λ < b

m(ε) , we have∣∣∣∣∫ ∞

0

tα−1e−tg(
t

λ
)dt
∣∣∣∣ ≤ ∫ b

0

tα−1e−t
∣∣∣∣g( tλ)

∣∣∣∣ dt+
∫ ∞

b

tα−1e−t
∣∣∣∣g( tλ)

∣∣∣∣ dt
≤ max

x≥0
|g(x)|

∫ b

0

tα−1e−tdt+ ε

∫ ∞

b

tα−1e−tdt

≤ εM + ε

∫ ∞

0

tα−1e−tdt = ε(M + Γ(α)),

where M = max
x≥0
|g(x)|, and Γ(α) is the Euler’s gamma function.

Since M and Γ(α) are finite, and ε > 0 is an arbitrary positive number, the proof of
Lemma 4.1 is completed. �

We now investigate the asymptotic behavior of the ergodic distribution function
(QWλ

(x)) of the process Wλ(t) ≡ λ(X(t)− s), as λ→ 0.

Theorem 4.1. Let the conditions of Proposition 3.1 be satisfied. Then, for each α > 0
and x ≥ 0, the following asymptotic expansion can be written for the ergodic distribution
function (QWλ

(x)) of the process Wλ(t), as λ→ 0:

(30) QWλ
(x) = Rα(x) +

m2

2m1α
(Gα(x)−Rα(x)) λ+ o(λ),
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where mk = E(ηk1 ), k = 1, 2; Rα(x) = 1
α

∫ x
0

(1 −Gα(t))dt; Gα(x) = 1
Γ(α)

∫ x
0
tα−1e−tdt.

Proof. Taking the definition of the process Wλ(t) ≡ λ(X(t)− s) into account in (8), we
have
(31) QWλ

(x) ≡ lim
t→∞P {Wλ(t) ≤ x} = 1− EUη(ζ1 −

x

λ
) (EUη(ζ1))

−1
.

If the condition m2 = E(η2
1) < +∞ is satisfied, then the following asymptotic expan-

sion is correct (see [4], p.366):

(32) Uη(v) =
v

m1
+

m2

2m2
1

+ g(v), as v →∞.

Here, lim
v→∞ g(v) = 0.

Using formula (32), we obtain the following expression, as λ→ 0:

(33) EUη(ζ1) =
α

λm1
+

m2

2m2
1

+ J1(α, λ),

where

(34) J1(α, λ) =
λα

Γ(α)

∫ ∞

0

vα−1e−λvg(v)dv =
1

Γ(α)

∫ ∞

0

tα−1e−tg(
t

λ
)dt.

Using Lemma 4.1, for each α > 0, relation (34) yields
(35) lim

λ→0
J1(α, λ) = 0.

Then, substituting (35) into (33), we can obtain the following asymptotic expansion,
as λ→ 0:
(36) EUη(ζ1) =

α

λm1
+

m2

2m2
1

+ o(1).

Then, as λ→ 0, we can rewrite (36) as follows:

(37) (EUη(ζ1))−1 =
λm1

α

(
1− m2λ

2m1α
+ o(λ)

)
.

Similarly, we obtain

EUη(ζ1 −
x

λ
) =

(
xαe−x

m1Γ(α)
+
α− x
m1

(1−Gα(x))
)

1
λ

(38) +
m2

2m2
1

(1−Gα(x)) + J2(α, λ, x),

where

J2(α, λ, x) =
λα

Γ(α)

∫ ∞

x
λ

vα−1e−λvg(v)dv.

For each x ≥ 0,

(39) J2(α, λ, x) =
1

Γ(α)

∫ ∞

x

tα−1e−tg(
t

λ
)dt ≤ 1

Γ(α)

∫ ∞

0

tα−1e−tg(
t

λ
)dt.

Using Lemma 4.1, for each α > 0 and x ≥ 0, relation (39) yields
(40) lim

λ→0
J2(α, λ) = 0.

Therefore, from (39) and (40), we get, as λ→ 0 :

(41) EUη(ζ1 −
x

λ
) =

(
xαe−x

m1Γ(α)
+
α− x
m1

(1−Gα(x))
)

1
λ

+
m2

2m2
1

(1−Gα(x)) + o(1).

Substituting (37) and (41) into (31) and carrying out the corresponding calculations,
as λ→ 0, we obtain

QWλ
(x) =

x

α
(1−Gα(x)) − xαe−x

αΓ(α)
+Gα(x)

(42) +
m2

2m1α

(
xαe−x

αΓ(α)
− x

α
(1−Gα(x))

)
λ+ o(λ).
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As λ→ 0, we can rewrite (42) as

(43) QWλ
(x) = Rα(x) +

m2

2m1α
(Gα(x)−Rα(x)) λ+ o(λ),

where

Rα(x) =
x

α
(1−Gα(x)) − xαe−x

αΓ(α)
+Gα(x).

Let’s simplify Rα(x):

Rα(x) =
x

α
(1−Gα(x)) − xαe−x

αΓ(α)
+

1
Γ(α)

∫ x

0

tα−1e−tdt

=
x

α
(1−Gα(x)) +

1
αΓ(α)

∫ x

0

tαe−tdt =
1
α

∫ x

0

(1−Gα(t)) dt.

Consequently, we have

(44) Rα(x) =
1
α

∫ x

0

(1−Gα(t)) dt.

Finally, substituting (44) into (43) yields (30).
This completes the proof of Theorem 4.1. �
Now, we can prove the weak convergence theorem for the ergodic distribution function

(QWλ
(x)) of the process Wλ(t) ≡ λ(X(t)− s), as λ→ 0.

Theorem 4.2. (Weak convergence theorem). Under the conditions of Theorem 4.1, for
each x ≥ 0 and α > 0, we have

(45) lim
λ→0

QWλ
(x) = Rα(x) ≡ 1

α

∫ x

0

(1−Gα(t)) dt.

Here, Gα(x) = 1
Γ(α)

∫ x
0
tα−1e−tdt.

Proof. Since Rα(x) and Gα(x) are distribution functions, we have 0 ≤ Rα(x) ≤ 1 and
0 ≤ Gα(x) ≤ 1 for each x ≥ 0, α > 0. Therefore, for each α > 0, we have
(46) max

x
|Gα(x)−Rα(x)| ≤ 1.

Since m2 = E(η2
1) <∞, we have

(47)
m2

2m1α
|Gα(x) −Rα(x)| ≤ m2

2m1α
<∞

for each α > 0, by using (46). Then the second term in the asymptotic expansion (30)
tends to zero, as λ→ 0.

In other words, the ergodic distribution of the process Wλ(t) weakly converges to the
limit distribution Rα(x), as λ→ 0, i.e., for each x ≥ 0 and α > 0,

QWλ
(x)→ Rα(x) ≡ 1

α

∫ x

0

(1−Gα(t)) dt.

This completes the proof of Theorem 4.2. �
Remark 4.1. So, we have obtained the asymptotic expansion for the ergodic distribution
function of Wλ(t). It is an important mathematical problem to see how close these
expansions are to the exact expressions. In this study, we do not consider this problem
in detail but investigate a special case to determine how much the obtained expansions
could be close to the exact expressions, by using the Monte-Carlo simulation method.

5. SIMULATION RESULTS

In the previous sections, the main aim of this study has been attained. However, it
is advisable to test the adequateness of approximate formulas to the exact ones. For
this purpose, using the Monte-Carlo experiments, we can give the following simulation
results. First, let’s suppose that the random variable ζ1 has the gamma distribution with
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the parameters (α = 5;λ = 1) and (α = 5;λ = 0.5), and the random variable η1 has the
second-order Erlang distribution with the parameter μ = 10. In addition, we assume
that Q̂Wλ

(x) denotes the value of the ergodic distribution function of the process Wλ(t)
which is calculated by using the Monte-Carlo simulation method and Q̃Wλ

(x) denotes
the value of the first two terms of the asymptotic expansion given by Theorem 4.1. We
define

Δk =
∣∣∣Q̂Wλ

(x)− Q̃Wλ
(x)

∣∣∣ ; δk =
Δk

Q̂Wλ
(x)

100% ; APk = 100− δk, k = 1, 2.

In other words, the numbers Δk, δk, and APk denote the absolute error, relative error,
and accuracy percentage between the simulation and asymptotic results for the ergodic
distribution function of the process Wλ(t), respectively. So we can generate Tables 1
and 2.

Table 1. λ = 1
x Q̂Wλ

(x) Q̃Wλ
(x) Δ1 δ1 (%) AP 1 (%)

0.2 0.03890 0.038800063 0.0000999370 0.256907457 99.74309254
0.4 0.07770 0.077601225 0.0000987749 0.127123456 99.87287654
0.6 0.11650 0.116404990 0.0000950100 0.081553624 99.91844638
0.8 0.15530 0.155206876 0.0000931239 0.059963884 99.94003612
1.0 0.19410 0.193988040 0.0001119600 0.057681748 99.94231825
1.2 0.23280 0.232708602 0.0000913983 0.039260430 99.96073957
1.4 0.27140 0.271304393 0.0000956067 0.035227236 99.96477276
1.6 0.30975 0.309687006 0.0000629945 0.020337200 99.97966280
1.8 0.34780 0.347746650 0.0000533505 0.015339410 99.98466059
2.0 0.38535 0.385356902 0.0000690164 0.001791006 99.99820899

Table 2. λ = 0.5
x Q̂Wλ

(x) Q̃Wλ
(x) Δ2 δ2 (%) AP 2 (%)

0.2 0.03936000 0.039400029 0.0000400289 0.10169942600 99.89830057
0.4 0.07874000 0.078800294 0.0000602936 0.07657299600 99.92342700
0.6 0.11815000 0.118198945 0.0000489455 0.04142657200 99.95857343
0.8 0.15754000 0.157585084 0.0000450844 0.02861776100 99.97138224
1.0 0.19692000 0.196931075 0.0000110752 0.00562422100 99.99437578
1.2 0.23618000 0.236187033 0.0000703335 0.00297796300 99.99702204
1.4 0.27528000 0.275278747 0.0000125294 0.00045515200 99.99954485
1.6 0.31411000 0.314108700 0.0000129951 0.00041371100 99.99958629
1.8 0.35255960 0.352559624 0.0000237329 0.00000673161 99.99999327
2.0 0.39049964 0.390499642 0.0000166158 0.00000425500 99.99999957

6. Conclusion

In this study, a renewal-reward process (X(t)) with a discrete interference of chance
is investigated. The weak convergence theorem is proved for the ergodic distribution
of the process Wλ (t) ≡ λ(X(t) − s), as λ → 0. Moreover, an exact expression for the
limit distribution is derived, when the random variable ζ1, which describes the discrete
interference of chance, has a gamma distribution with parameters (α, λ). Finally, the
accuracy of the approximation formula is tested by the Monte Carlo simulation method.
For the calculation of each value of Q̂Wλ

(x) in Tables 1 and 2, we taken 108 realizations
of the process X(t). As seen from Tables 1 and 2, the approximate formulas provide
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a high accuracy even for the values of the parameter λ which are not very small. For
example, as seen from the tables, the accuracy percentages (APk) are greater than %99,
for all values of the parameter x from the interval [0.2, 2.0], when λ = 1 and λ = 0.5.
This indicates that the asymptotic expansion obtained can safely be applied to different
problems of inventory or queuing models, even for not small values of the parameter λ.

Note that it is of interest to obtain the similar results for others types of discrete
interference of chance by using the methods introduced in this paper.
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