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S. Y. NOVAK

LOWER BOUNDS TO THE ACCURACY OF SAMPLE MAXIMUM
ESTIMATION

We derive lower bounds for sup-norm losses of estimators of the distribution function
of a sample maximum, and show that their consistent estimation in a general situation
is impossible.

1. Introduction

The asymptotic behavior of the sample maximum

Mn = max
1≤i≤n

Xi ,

where X1, ..., Xn is a sample of independent copies of a random variable X with the dis-
tribution function (d.f.) F plays the central role in extreme value theory (see Embrechts
et al. [4], Galambos [6], Leadbetter et al. [8], among others). The important question
is whether the distribution function, Fn, of the sample maximum can be consistently
estimated from a sample of independent and identically distributed random variables
(r.v.s).

An arbitrary d.f. F̂n(·) ≡ F̂n(·, X1, ..., Xn) is called an estimator of Fn. An estimator
F̂n is consistent if ‖F̂n−Fn‖ −→p 0 as n→∞, where ‖·‖ is the sup–norm. An estimator
F̂n is called L1–consistent if IEF ‖F̂n − Fn‖ → 0 as n→∞.

The celebrated Glivenko–Cantelli theorem states that the empirical distribution func-
tion Fn is a consistent estimator of the unknown distribution function F . This could
make one expect that Fnn approximates Fn. In fact, Fnn would be a poor approximation
to Fn. Indeed, note that sup0≤p≤1 |(1−p)n−e−np| → 0 as n→∞ by Taylor’s formula.
Therefore, ‖Fn − e−n(1−F )‖ → 0 and ‖Fnn − e−n(1−Fn)‖ → 0 as n→∞ (cf. a remark
in O’Brien [13]). Thus, Fnn approximates Fn only if n(1 − Fn(x)) =

∑n
i=1 1I{Xi ≥ x}

approximates nIP(X ≥ x) for all x. However,

1− Fn(x)− IP(X ≥ x) = ζn(x)/
√
n ,

where ζn(x) ⇒ N (0;F (x)(1 − F (x))) by the central limit theorem. Hence ‖Fnn − Fn‖
does not converge to 0 in probability.

According to Beirlant & Devroye [3], for any estimator {F̂n} of Fn there exists a d.f.
F on [2;∞) such that

(1) lim sup
n→∞

IEF ‖F̂n − Fn‖ ≥ 1/2e3

(i.e., there exists an infinite sequence {kn} of natural numbers such that IEF ‖F̂kn −
F kn‖ ≥ 1/2e3). Thus, there are no L1-consistent estimators of Fn.

Note that one can derive a lower bound for lim supn→∞ IPF (‖F̂n − Fn‖ ≥ c) where
c > 0, from (1): by the Paley–Zygmund inequality [14],

(2) IP(X ≥ θIEX) ≥ (1− θ)2(IEX)2/IEX2 (∀θ ∈ [0; 1])
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if X ≥ 0 and IEX <∞. As ‖F̂n − Fn‖ ≤ 1, (1), (2), and Chebyshev’s inequality yield

lim sup
n→∞

IPF (‖F̂n − Fn‖ ≥ θ/2e3) ≥ (1− θ)2/4e6.

Choosing, for instance, θ = 1/3, we get

(3) IPF (‖F̂n′ − Fn
′
‖ ≥ 1/6e3) ≥ 1/9e6

for an infinite sequence {n′} of natural numbers.
A sharper bound is valid for supF IPF (‖F̂n − Fni ‖ ≥ 1/4) [12]:

(4) sup
F

IPF
(
‖F̂n − Fn‖ ≥ 1/4

)
≥ 1/4 (n ≥ 1)

for any estimator {F̂n} of the distribution function of the sample maximum.
In this paper, we strengthen (1) and (3). We establish also a sharp result for scale-

invariant estimators.

2. Results

Theorem 1. For any estimator {F̂n} of the distribution function of the sample maxi-
mum, there exists a d.f. F such that

(5) lim sup
n→∞

IPF
(
‖F̂n − Fn‖ ≥ 1/9

)
≥ 1/3.

Chebyshev’s inequality and (5) imply that there exists a d.f. F such that

lim sup
n→∞

IEF ‖F̂n − Fn‖ ≥ 1/27.

An estimator ãn(·) is called scale-invariant if

ãn(x, x1, ..., xn) = ãn(cx, cx1, ..., cxn)

for all x, x1, ..., xn, c > 0. Examples of scale-invariant estimators of Fn include Fnn ,

where Fn is the empirical distribution function, and the “blocks” estimator F̃n =∑[n/r]
i=1 1I{Mi,r < x}/[n/r], where Mi,r = max{X(i−1)r+1, ..., Xir} (1 ≤ r ≤ n).

Theorem 2. For any scale-invariant estimator {F̃n} of the distribution function of the
sample maximum,

(6) IPF0

(
‖F̃n − Fn0 ‖ ≥ 1/4

)
≥ 1/4 (n ≥ 1) ,

where F0 is the uniform d.f. on [0; 1].

Theorems 1 and 2 indicate that the consistent estimation of the distribution function
of the sample maximum is possible only under certain assumptions on the unknown
distribution. One approach is to use the fact that there are three types of limit laws for
Fn [6, 7, 8, 4] if

(7) lim
n→∞ IP(X > x)/IP(X ≥ x) = 1.

If (7) holds, then there exist sequences {bn} and {cn} such that (Mn−cn)/bn converges
weakly as n → ∞ [4, 8]. Under this assumption, a consistent estimator of the limiting
d.f. for (Mn−cn)/bn can be suggested (see, e.g., Athreya & Fukuchi [1]); a similar result
for the case of a stationary sequence {Xi, i ≥ 1} is given in [2].

Our conjecture is that the estimation accuracy can be arbitrarily poor if (7) is the
only restriction on the class of possible distributions: for an arbitrary estimator {F̂n} of
the distribution function of the sample maximum and any sequence εn ↓ 0 , there exists
a d.f. F obeying (7) such that lim supn→∞ IEF ‖F̂n − Fn‖ ≥ εn.
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3. Proofs

Our approach incorporates some ideas from [3] and [12]. Suppose we want to estimate
a functional aF of the unknown distribution function F . We assume that aF is an
element of a normed space of real-valued functions defined on IR or on an interval in IR.
Examples include aF = F, where F (x) = IP(X < x) is a distribution function, aF = f,
where f = F ′ is a density, aFθ

= θ, where Fθ is an element of a parametric family of
distributions {Fθ, θ ∈ Θ}, Θ ⊂ IR, etc..

Denote, by A , the class of “scale-preserving” functionals: a ∈ A if aF1(x) = aF (cx)
(∀x), where F1(·) = F (c·), c > 0. Among the elements of A are the tail index and the
tail constant of a heavy-tailed distribution and the distribution function of the sample
maximum [11].

Let ân be an arbitrary estimator of aF . If aF belongs to a specified class of functions,
then âF is presumed to be an element of the same class. When we use a subscript to
denote a particular distribution (say, IP∗), symbols F and f with the same subscript
(say, F∗ and f∗) denote the corresponding distribution function and its density.

Given two distribution functions F0 and F1, we put IPi = IPFi ,

(8) sn = ‖aF0 − aF1‖ ,

and let
dn = sup

A∈B
|IP0 ((X1, ..., Xn) ∈ A)− IP1 ((X1, ..., Xn) ∈ A)|

denote the total variation distance between IPn0 and IPn1 (the supremum is taken over
the class B of Borel sets).

Lemma 3. If a ∈ A, then for any scale-invariant estimator {ãn}, d.f. F0 and c > 0,

(9) IP0(‖ãn − aF0‖ ≥ sn/2) ≥ (1− dn)/2 (n ≥ 1) ,

where sn is given by (8), and F1(·) = F0(c ·).

According to the well-known property of the total variation distance,

1− dn ≥ (1− d1)n ,

Chebyshev’s inequality and (9) imply that

(10) IEF0‖ân − aF0‖ ≥ sn(1− d1)n/4.

The right-hand side of (10) hints that, in a sense, it is “optimal” to choose (IP0, IP1)
obeying sn ∼ (1− d1)n.

Proof of Lemma 3. Let F0 and F1 be two d.f.s. Note that

(11) IP0(‖ân − aF0‖ ≥ sn/2) + IP1(‖ân − aF1‖ ≥ sn/2) ≥ 1− dn
for any ân and n ≥ 1.

Indeed, suppose that the supremum ‖aF0 − aF1‖ is achieved at a point x0 and sn =
aF0(x0)− aF1(x0). Since ‖ân − aF0‖ ≥ aF0(x0)− ân(x0), we have

IP0 (‖ân − aF0‖ ≥ u+ sn) = IP0 (‖ân − aF0‖ ≥ u+ aF0(x0)− aF1(x0))
≥ IP0 (aF1(x0)− ân(x0) ≥ u) ≥ IP1 (−u ≥ ‖ân − aF1‖)− dn .

Choosing u = −sn/2, we get

IP0 (‖ân − aF0‖ ≥ sn/2) + IP1 (‖ân − aF1‖ > sn/2) ≥ 1− dn .

A similar argument applies if sn = aF1(x0)− aF0(x0).
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In a general situation, for every ε > 0 there exists x0 = x0(ε) such that sn ≤
aF0(x0)− aF1(x0) + ε or sn ≤ aF1(x0)− aF0(x0) + ε. We can repeat our argument with
u replaced by u+ ε. Since the events

Aε = {‖ân − aF0‖ ≥ u+ ε} and Bε = {‖ân − aF1‖ > −u− ε}

are monotone in ε, we have

IP0(Aε)→ IP0(A0) , IP1(Bε)→ IP1(B0)

as ε→ 0. Hence, (11) holds.
If ãn is a scale-invariant estimator, a ∈ A and F1(x) = F0(cx) (∀x), then

IP1 (‖ãn − aF1‖≥sn/2)

=
∫
...

∫
1I{sup

x
|ãn(x, x1, ..., xn)− aF0(cx)|≥sn/2}dF0(cx1)...dF0(cxn)

=
∫
...

∫
1I{sup

y
|ãn(y/c, y1/c, ..., yn/c)− aF0(y)|≥sn/2}dF0(y1)...dF0(yn)

= IP0 (‖ãn − aF0‖ ≥ sn/2) .

This and (11) yield (9). The proof is complete. �

Proof of Theorem 1. Let Xt = 2W+tW , where t ∈ [0; 1], IP(W = m) = 2−m (m ≥ 1)
and tk ∈ {0; 1} is the kth element of the binary expansion t =

∑
k≥1 tk2

−k [3]. Denote
by IPt and Ft the distribution and the d.f. of Xt. Distribution function Ft in (5) is a
member of the parametric family {Ft}t∈[0;1] . By construction,

IPt(2m) = 2−m (t ∈ Am), IPt(2m) = 0 (t ∈ Bm),
IPt(2m+ 1) = 0 (t ∈ Am), IPt(2m+ 1) = 2−m (t ∈ Bm),

where

Am = [0; 1/2m) ∪ ... ∪ [(2m − 2)/2m; (2m − 1)/2m),
Bm = [1/2m; 2/2m) ∪ [(2m − 1)/2m; 1].

Let k ≡ k(n) = [kn] and c ≡ c(n) = ((1− 2−k)n − (1 − 2−k+1)n)/2, where

kn = − log2(1− (2/3)1/n) = log2(n/(ln 1.5)) + o(1) .

Then ∫ 1

0

IPt(|F̂n(2k + 1)− Fnt (2k + 1)| ≥ c) dt

=
∫ 1

0

∑
m1,...,mn

1I{|F̂n(2k + 1)− Fnt (2k + 1)| ≥ c}IPt(m1)...IPt(mn) dt

=
∑

m1,...,mn

(∫
Ak

dt+
∫
Bk

dt

)
1I{|F̂n(2k + 1)− Fnt (2k + 1)| ≥ c}IPt(m1)...IPt(mn).

If t ∈ Am, then

IPt(l) = IPt+2−m(l) (l ∈/ {2m; 2m+ 1}).

One can check also that

Ft(2k + 1) = 1− 2−k (t ∈ Ak) , Ft(2k + 1) = 1− 2−k+1 (t ∈ Bk).
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Denote m̄ = (m1, ...mn), Dn = {m̄ : mi ∈/ {2k; 2k + 1} (∀i ≤ n)}. Then∫ 1

0

IPt(‖F̂n − Fnt ‖ ≥ c) dt ≥
∫
Ak

dt
∑
m̄∈Dn

IPt(m1)...IPt(mn)(
1I{|F̂n(2k + 1)− (1− 2−k)n| ≥ c}+ 1I{|F̂n(2k + 1)− (1− 2−k+1)n| ≥ c}

)
.

Using the triangle inequality, we derive∫ 1

0

IPt(‖F̂n − Fnt ‖ ≥ c) dt ≥
∫
Ak

∑
m̄∈Dn

IPt(m1)...IPt(mn) dt

=
∫
Ak

IPt((X1, ..., Xn) ∈ Dn)dt = (1− 2−k)n
∫
Ak

dt = (1 − 2−k)n/2 = 1/3 .(12)

Note that

(1− 2−k)n − (1− 2−k+1)n ≥ (1− 2−k)n − (1 − 2−k)2n = 2/9 .

Hence c ≥ 1/9, and (12) yields∫ 1

0

IPt(‖F̂n − Fnt ‖ ≥ 1/9) dt ≥ 1/3 (n ≥ 1).

By Fatou’s lemma, ∫ 1

0

lim sup
n→∞

IPt(‖F̂n − Fnt ‖ ≥ 1/9) dt ≥

lim sup
n→∞

∫ 1

0

IPt(‖F̂n − Fnt ‖ ≥ 1/9) dt ≥ 1/3.

Hence there exists a d.f. F such that (5) holds. The proof is complete. �

Proof of Theorem 2. Let {F̃n} be a scale-invariant estimator. We will construct two
d.f.s F0 and F1 ≡ F1,n such that both sn and dn are bounded away from zero. One of
those two d.f.s, F0, can be chosen almost arbitrarily, while F1 ≡ F1,n is a modification
of F0 such that d1 and ‖F0 − F1‖ decay like 1/n as n→∞.

We put

(13) F0(x) = x as 0 ≤ x ≤ 1 , F1(x) = x2−1/n as 0 ≤ x ≤ 21/n .

With aPi = Fni , we have

(14) d1 = 1− 2−1/n , sn = 1/2 .

Note that sn = (1−d1)n. Combining (14) and (9), we derive (6). The proof is complete.
�
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4. P. Embrechts, C. Klüppelberg, and T. Mikosch (1997) Modelling Extremal Events for Insurance
and Finance. Berlin: Springer.



LOWER BOUNDS TO THE ACCURACY OF SAMPLE MAXIMUM ESTIMATION 161

5. W. Feller (1971) An introduction to probability theory and its applications. — New York:
Wiley.

6. J. Galambos (1987) The asymptotic theory of extreme order statistics. — Melbourne: Krieger.
7. B.V. Gnedenko (1943) Sur la distribution du terme maximum d’une série aléatoire. — Ann.
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