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W. I. SKRYPNIK

ON LATTICE OSCILLATOR-TYPE GIBBS SYSTEMS WITH

SUPERSTABLE MANY-BODY POTENTIALS

The grand canonical correlation functions of lattice oscillator-type Gibbs systems

with a general one-body phase measure space and many-body superstable interaction
potentials are found in the thermodynamic limit at low activities as a solution of

the ordered lattice Kirkwood–Salzburg equation. For special choices of the measure

space, they describe the equilibrium states of lattice classical and quantum linear
oscillator systems and the states of stochastic gradient lattice systems of interacting

oscillators with Gibbs initial states.

In this paper, we will find the thermodynamic limit of the finite-volume grand canon-
ical correlation functions of oscillator-type unbounded spin lattice Gibbs systems with
the inverse temperature β ≥ 0, the one-body phase measure space (Ω, e−βuP 0), an
interaction potential energy U(ωX), X ⊂ Zd, and an external potential u(ω), where
ωX = (ωx ∈ Ω, x ∈ X). They are given by

ρΛ(ωX) = Ξ−1
Λ χΛ(X)

∑
Y⊆Λ\X

z|X|+|Y |
∫

exp{−βU(ωX∪Y )}P (dωY ),

where |Y | is a number of sites in Y, χΛ is the characteristic function of a hyper-cube
Λ, z ∈ C is the activity, the grand partition function ΞΛ coincides with the sum in the
numerator for X = ∅, and

P (dωY ) =
∏
y∈Y

P (dωy), P (dωy) = e−βu(ωy)P 0(dωy).

The thermodynamic limit demands that Λ be enlarged to Zd. The interaction potential
energy is given by

U(ωX) =
∑
Y⊆X

uY (ωY ), uy(ωy) = 0,

where uY (ωY ) = uY+a(ωY ), |Y | = k, a ∈ Zd is the k-body translation invariant potential.
The potential energy is an unbounded function, and P 0(Ω) = ∞ for oscillator-type or
abstract unbounded spin systems. The space Ω can be considered as a metric space
(σ-algebra is associated with Borel sets), which is a discrete union of finite balls, and
the measure P 0 is finite on them. Classical lattice oscillator systems are described by
ω = q ∈ R = Ω, P 0(dq) = dq. In the quantum case, Ω is the space of continuous paths,
and P 0(dω) = dqP βq,q(dw), q ∈ R, where P βq,q(dw) is the conditional Wiener measure.
Stochastic lattice gradient systems of interacting oscillators can also be represented as
generalized Gibbs oscillator-type lattice systems with P 0(dω) = dqPq(dw), q ∈ R, where
Pq(dw) is the Wiener measure [1].

The results of this paper allows one to find weak solutions (without the introduction
of additional Wiener paths used in [1]) of the diffusion hierarchy for correlation functions
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of the infinite component stochastic gradient differential equation

q̇x(t) = −∂u0(qx)−
∑
|Y |≥2

∂xu
0
Y (qY ) + β−

1
2 ẇx(t), x ∈ Zd,

where the dot means the time derivative, qx ∈ R, u0
Y (qY ) is a |k|-body translation

invariant short-range superstable interaction potential, u0 is an external potential, ẇx(t)
are the independent processes of white noise, ∂x = ∂

∂qx
, and the summation is performed

over finite subsets of Zd. The initial states for such systems have to be Gibbsian with
a special structure generated by many-body interaction potentials considered in this
paper and more general than in [1], where we considered a pair interaction of stochastic
oscillators: u0

Y (qY ) = 0, |Y | > 2.
We assume that the superstability condition ([2],[3]) holds for the positive and negative

parts of the many-body potentials. In other words, there exists a non-negative function
v on Ω such that
(1)

|u±Y (ωY )| ≤ JY
∑
y∈Y

v(ωy), N0 =

∫
eβ(γv1+ζ(ω)−u(ω))P 0(dω) <∞, ζ ≥ 0, γ, β > 0,

where uY (ωY ) = u+
Y (ωY )− u−Y (ωY ), u± ≥ 0, ||J || = max

x

∑
x∈Y

JY <∞, the summation is

performed over bounded subsets of Zd containing a site x.
The sequence ρ = {ρ(ωX ; z) = ρ(ωX), X ⊂ Zd, |X| <∞} of the thermodynamic limit

of the grand canonical Gibbs finite-volume correlation functions satisfies the Kirkwood–
Salzburg (KS) equation (its derivation can be found in [1])

ρ = zKρ+ zα,

where α(ωX) = δ|X|,1, δk,l = 1, k = l, and δk,l = 0, k 6= l. The KS operator K is given by

(KF )(ωX) =
∑
Y⊂Xc

∫
K(ωx|ωX\x;ωY )[F (ωX\x∪Y )−

∫
P (dωx)F (ωX∪Y )]P (dωY ),

where the summation is performed over all bounded subsets of Xc, the integrations are
performed over the Cartesian |Y |-fold product Ω|Y | of the measure space Ω, for X = x,
the first term in the square bracket corresponding to Y = ∅ is equal to zero, and

K(ωx|ωX\x;ω∅) = e−βW (ωx|ωX\x), W (ωx|ωX\x) = U(ωX)− U(ωX\x).

The KS kernels are determined in the following way (X ∩ Y = ∅):

K(ωx|ωX\x;ωY ) = e−βW (ωx|ωX\x)Kx(ωX ;ωY ),

(2) Kx(ωX ;ωY ) =
∑
n

∑
∪Yj=Y,Yj 6=∅

n∏
j=1

(e−βW (ωX ;ωYj |x) − 1),

where the summation is performed over all sets Yj which cover Y, and

W (ωX ;ωY |x) =
∑

x∈Z⊆X

uZ∪Y (ωZ∪Y ).

The KS kernels are determined from the equality

e−βW̃ (ωX ;ωY |x) =
∏
∅6=S⊆Y

(1 + (e−βW (ωX ;ωS |x)− 1)) =
∑
S⊆Y

Kx(ωX ;ωS), Kx(ωX ;ω∅) = 1,

where

(3) W̃ (ωX ;ωY |x) =
∑

x∈Z⊆X

∑
∅6=S⊆Y

uZ∪S(ωZ∪S) =
∑
∅6=S⊆Y

W (ωX ;ωS |x),
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and

W (ωx|ωX\x, ωY ) = W (ωx|ωX\x) + W̃ (ωX ;ωY |x).

In the case of a pair interaction with a pair potential ux,y, the KS kernel is given by

Kx(ωX ;ωY ) =
∏
y∈Y

(e−βux,y(ωx,ωy) − 1).

One expects to find the unique solution of the KS equation in the Banach space Eξ,f ,
which is a linear space of the sequences of measurable functions GX(ωX) with the norm

||G||ξ,f = max
X

ξ−|X|ess sup
wX

exp{−
∑
x∈X

f(ωx)}|G(ωX)|, f(ω) = γβv1+ζ(ω), ζ ≥ 0.

The unbounded character of the functions W (ωx|ωX\x), W (ωX ;ωY |x) is an obstruction
for a proof that the KS operator is bounded in Eξ,f and finding the solution of the KS
equation as a convergent series in powers of the activity z if x is fixed. To eliminate
this obstruction, one has either to symmetrize the KS equation as in [1],[4] (see Remark
1) or to establish the special ordering in x: the ordered KS operator and the equation
are such that the site x depends on ωX as the first site (in the lexicographic order)
determined through the ordering condition v(ωx) = max

y∈X
v(ωy). The symmetrization is

more complicated than the ordering. For classical lattice oscillator systems and an even
function v, the ordering condition is equivalent to |qx| = max

y∈X
|qy|. The analog of this

condition was proposed in [5] for the ordering of the KS equation corresponding to the
integer-valued Ising model with a pair potential. In this paper, we establish that the
ordered KS operator is bounded in Eξ,f for a positive γ if ζ > 0.

The ordering and the first inequality (1) yield the important inequality

(4) |W (ωx|ωX\x)| ≤
∑

x∈Z⊆X

|uZ(ωZ)| ≤ 2
∑

x∈Z⊆X

JZ
∑
y∈Z

v(ωy) ≤ 2||J ||1v(ωx),

where ||J ||1 = max
x

∑
x∈Y

JY |Y |, which is applied to the case of non-positive potentials.

Let W±, W̃± correspond to the potentials u±. Then the inequality

n∑
j=1

W−(ωX ;ωYj |x) ≤ W̃−(ωX ;ωY |x), ∪nj=1Yj = Y

is true, since the sum in (3) for W±, W̃± contains the sets Y1, ..., Yn. The last inequality
and (4) give

(5) |Kx(ωX ;ωY )| ≤ exp{βW̃−(ωX ;ωY |x)− βκ||J ||
∑
y∈Y

v(ωy)}K−x (ωX ;ωY ),

where

K−x (ωX ;ωY ) = exp{βκ||J ||
∑
y∈Y

v(ωy)}
∑
n

∑
∪Yj=Y,Yj 6=∅

n∏
j=1

K̃x(ωX ;ωYj )

K̃x(ωX ;ωY ) = 1− e−βW
−(ωX ;ωY |x) + 1− e−βW

+(ωX ;ωY |x),

and κ = 0(1) corresponds to positive (non-positive) potentials. Here, we used the in-
equality |e−a − e−b| ≤ 1 − e−a + 1 − e−b, a, b ≥ 0. In addition, we have (due to (1) and
the ordering)

W̃−(ωX ;ωY |x) =
∑
∅6=S⊆Y

W−(ωX ;ωS |x) ≤
∑

x∈Z⊆X∪Y

JZ
∑
y∈Z

v(ωy) ≤
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(6) ≤
∑

x∈Z⊆X∪Y

JZ [|Z|v(ωx) +
∑
y∈Y

v(ωy)] ≤ ||J ||1v(ωx) + ||J ||
∑
y∈Y

v(ωy).

From (4-6), we derive

(7) |K(ωx|ωX\x;ωY )| ≤ eβ3κ||J||1v(ωx)K−x (ωX ;ωY ).

For the norm of the ordered KS operator, we have the inequality

||K||ξ,f ≤ (ξ−1 +N0) max
X

ess sup
ωX

e−f(ωx)K̄x(ωX),

where

K̄x(ωX) =
∑
Y⊆Xc

ξ|Y |
∫
|K(ωx|ωX\x;ωY )|P ′(dωY ),

P ′(dωY ) = exp{f(ωY )}P (dωY ), f(ωY ) =
∑
x∈Y

f(ωx).

Further, we will rely on the inequality∫ n∏
j=1

K̃x(ωX ;ωYj )P
′(dωY ) ≤

≤
n∏
j=1

In(X;Yj)

∫
exp{ 1

n

n∑
j=1

f(ωYj )}P ′(dωY ) ≤ N |Y |3

n∏
j=1

In(X;Yj),

where

In(X;Y ) = ess sup
ωY

e−
1
n f(ωY )K̃x(ωX ;ωY ), N3 =

∫
e2f(ω)P (dω).

Here, we used the inequality

1

n

n∑
j=1

f(ωYj ) ≤ f(ωY ),

which results from f(ωYj ) ≤ f(ωY ). Then (7) and the last inequalities give

e−3βκ||J||1v(ωx))K̄x(ωX) ≤
∑
Y⊂Xc

(N3ξ)
|Y |

∑
n

∑
∪Yj=Y,Yj 6=∅

n∏
j=1

In(X;Yj) ≤

(8) ≤ 1 +
∑
n≥1

1

n!
(

∑
Y 6=∅,Y⊂Xc

(N3ξ)∗(|Y |)In(X;Y ))n,

where ξ∗(a) equals ξa and 1, if ξ ≥ 1 and ξ < 1, respectively. Bound (8) is an analog of
bound (2.67) (there is no index n in In in it) from the fourth section in [6] for the KS
kernels for a lattice gas. From the inequality

|K̃x(ωX ;ωY )| ≤ β|W |(ωX ;ωY |x), |W | = W+ +W−,

we deduce

In(X;Y ) ≤ βess sup
ωY

e−
1
n f(ωY )|W |(ωX ;ωY |x).

But, due to (1) and the ordering,

|W |(ωX ;ωY |x) ≤
∑

x∈Z⊆X

|uZ∪Y |(ωZ∪Y ) ≤ 2
∑

x∈Z⊆X

JZ∪Y
∑

y⊆Z∪Y

v(ωy) ≤

≤ 2
∑

x∈Z⊆X

JZ∪Y [
∑
y⊆Y

v(ωy) + |Z|v(ωx)].
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With regard for the equality

ess sup
ω
e−n

−1βγv1+ζ(ω)v(ω) = (nβ−1γ−1)
1

1+ζ ηζ , ηζ = sup
v≥0

e−v
1+ζ

v,

we obtain

In(X;Y ) ≤ 2β
∑

x∈Z⊆X

JZ∪Y [(nβ−1γ−1)
1

1+ζ ηζ |Y |+ |Z|v(ωx)]

and

(9)
∑

Y 6=∅,Y⊂Xc
(N3ξ)∗(|Y |)In(X;Y ) ≤ 2β||J ||∗2[(nβ−1γ−1)

1
1+ζ ηζ + v(ωx)],

where

||J ||∗2 = max
x

∑
x∈Y

JY |Y |(N3ξ)∗(|Y |).

The last inequality shows that the power n on the left-hand side of (9) does not exceed

(4β||J ||∗2)n[(nβ−1γ−1)
n

1+ζ ηnζ + vn(ωx)].

Hence, relations (8) and (9) yield

K̄x(ωX) ≤ eβ(3κ||J||1+4||J||∗2)v(ωx)(1 +
∑
n≥1

1

n!
[4β

ζ
1+ζ (nγ−1)

1
1+ζ ηζ ||J ||∗2]n).

The series on the right-hand side converges if ζ > 0. Now it is not difficult to calculate
the norm of the KS operator with the help of the formula

sup
v

exp{−βγ[v1+ζ + av]} = exp{βζγ(
a

1 + ζ
)

1+ζ
ζ ]}.

For ζ > 0, we have

(10) ||K||ξ,f ≤

≤ (ξ−1+N0) exp{βζγ(
3κ||J ||1 + 4||J ||∗2

γ(1 + ζ)
)

1+ζ
ζ }(1+

∑
n≥1

1

n!
[4β

ζ
1+ζ (nγ−1)

1
1+ζ ηζ ||J ||∗2]n).

We recall that the case κ = 0 or κ = 1 corresponds to positive or non-positive potentials.
Hence, we have proved the following proposition.

Theorem. If ζ > 0 and ||J ||1, ||J ||∗2 <∞, then the norm ||K||ξ,f of the ordered KS
operator K in the Banach space Eξ,f is finite. It does not exceed the right-hand side of
(10), and the series

ρ =
∑
n≥0

zn+1Knα

determines the unique solution of the ordered KS equation in Ef,ξ, which is a holomorphic

function in z in the disc |z| < ||K||−1
ξ,f .

Remark 1. In [4], we wrote the sum in (2) for Kx(ωX ;ωY ) restricted by the condition
of non- intersections of Yj with Yk, i.e., we dealt with the reduced KS kernels for positive
infinite-range potentials. The partial result of [4] concerning these potentials can be ob-
tained with the help of the bounds from this paper. In [4], we proved that the symmetrized
KS operator is bounded in the Banach space Eξ,f for finite-range superstable potentials.



ON LATTICE OSCILLATOR-TYPE GIBBS SYSTEMS. . . 101

References

1. W. Skrypnik, On the evolution of Gibbs states of the lattice gradient stochastic dynamics of
interacting oscillators, Theory Stoch. Processes 15(31) (2009), no. 1, 61–82.

2. D. Ruelle, Probability estimates for continuous spin systems, Commun. Math. Phys. 50 (1976),
189-193.

3. J. Lebowitz and E. Presutti, Statistical mechanics of systems of unbounded spins, Commun.

Math. Phys. 50 (1976), 195-218.
4. W. Skrypnik, On lattice oscillator-type Kirkwood–Salzburg equation with attractive many-body

potentials, Ukr. Math. J. 62 (2010), no. 12, 1687-1704.

5. R. Israel and C. Nappi, Quark confinement in the two dimensional lattice Higgs–Villain model,
Commun. Math. Phys. 64 (1979), no. 2, 177-189.

6. D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York, 1969.

Institute of Mathematics of the NAS of Ukraine, 3, Tereshchenkivs’ka Str., Kyiv, Ukraine

E-mail address: volodymyr skrypnyk@ukr.net


