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ALEXEI M. KULIK AND DARYNA D. SOBOLEVA

LARGE DEVIATIONS FOR ONE-DIMENSIONAL SDE WITH

DISCONTINUOUS DIFFUSION COEFFICIENT

Large deviation principle is established for a family of solutions to one-dimensional
SDE’s under the condition that the set of discontinuity points of the diffusion coef-
ficient has zero Lebesgue measure.

1. Introduction

In this paper, we establish the large deviations principle (LDP) for a family Xε of
solutions to one-dimensional stochastic differential equations (SDE’s) of the form

(1) dXε
t =

√
εσ(Xε

t )dWt, Xε
0 = x0, ε > 0

under weak assumptions on the diffusion coefficient σ. LDP for general diffusion processes
with continuous coefficients is a well-known result, see [1]. On the other hand, there is
a substantial interest in studying the same problem for SDE’s with coefficients which
allow discontinuities of a certain type, since such SDE’s arise naturally, when one is
interested in models of diffusive motion in highly inhomogeneous media. This problem
was addressed to in [2], [3], and [4], where multidimensional SDE’s were considered with
coefficients, which have a discontinuity of the jump type along a fixed hyperplane.

Here, we consider the same problem from another side and prove LDP for the family of
solutions to (1) under the condition on the diffusion coefficient σ, which seems to be close
to the weakest possible one: in our main result, Theorem 1 below, the main assumption
is that the set Δσ of discontinuity points of σ has zero Lebesgue measure. Clearly, this
condition is much weaker than those from [2], [3], or [4], which mean for (1) just that σ
has a discontinuity of the jump type at a single point. On the other hand, our model is
more restrictive than those studied in [2], [3], and [4].

Let us outline the main idea of our approach. Using the change-of-time transformation
(see, e.g., [7]), one can provide weak solutions to (1) in the form

(2) Xε = F (
√
εW̃ )

with a certain mapping F : C([0,∞)) → C([0,∞)) and a Wiener process W̃ ; see Section
3.1 below. It can be shown easily that, if σ is continuous, then F is a continuous mapping
w.r.t. the standard topology in C([0,∞)), which corresponds to the uniform convergence
on compact sets. In that case, LDP follows directly from LDP for the Wiener process and
the so-called contraction principle (see, e.g., [5]). In work [6], a pair of semicontraction
principles was introduced, which allow one to provide separately the corresponding upper
and lower bounds for large deviations without the continuity assumptions on the mapping
F. In the case where the rate functions in these two bounds coincide, this yields LDP; that
is, it is possible to give extension of the contraction principle for certain discontinuous
mappings. In this paper, we will show that this extension is substantial and allows one
to control the large deviation asymptotics for the family of solutions to (1) with a highly
discontinuous diffusion coefficient σ.
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2. Main theorem

Let (S, d) be a Polish space, and let Xε, ε > 0 be random elements taking values in S.
Recall some standard definitions (see, e.g., [5].

Definition 1. The family {Xε} satisfies LDP with the rate function I : S → [0,∞], if,
for every open set G,

(3) lim inf
ε→0

ε logP {Xε ∈ G} ≥ − inf
x∈G

I(x),

and, for every closed set F,

(4) lim sup
ε→0

ε logP {Xε ∈ F} ≤ − inf
x∈F

I(x).

The rate function I is called good, if, for every a ∈ [0,∞), the set {x : I(x) ≤ a} is
compact.

If (3) holds, and (4) holds true for every compact set only, then the family {Xε} is
said to satisfy weak LDP.

The main result of this paper is given by the following theorem. Let S = C([0,∞))
with the metric

(5) d(f, g) =

∞∑
k=1

1

2k

(
sup

t∈[0,k]

|f(t)− g(t)| ∧ 1

)
.

Let Xε, ε > 0 be the family of random elements in C([0,∞)) corresponding to the weak
solutions to (1).

Theorem 1. Let σ be measurable and such that, for some positive c1, c2,

c1 ≤ σ2(x) ≤ c2, x ∈ R.

Assume also that the set Δσ of discontinuity points of σ has zero Lebesgue measure.
Then the family Xε, ε > 0 satisfies LDP with a good rate function J, which equals

(6) J(g) =
1

2

∫ ∞

0

(ġ(t))2

σ2(g(t))
dt

if g ∈ C([0,∞)) is an absolutely continuous function with g(0) = x0, ġ ∈ L2([0,∞)), and
J(g) = ∞ otherwise.

We prove Theorem 1 in Section 4. Before that, we give some auxiliary constructions
and statements in Section 3.

3. Auxiliary Constructions and Statements

3.1. Weak solutions to Eqs. (1). In this section, we provide representation (2) for
weak solutions to Eqs. (1), by using the following statement (see Example 4.2 in [7]).

Proposition 1. Let a Borel measurable function α : R → R be bounded and such that
α2(x) ≥ C, x ∈ R for some positive constant C. For some Wiener process B, define the
process

φt(B) =

∫ t

0

α−2(x +Bs)ds,

and denote the function inverse to φ w.r.t. the time variable by φ−1. Put

Xt = Bφ−1
t

+ x.

Then Xt satisfies SDE

(7) dXt = α(Xt)dWt

with the initial condition X0 = x and some Wiener process W.
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In our settings, put α(x) =
√
εσ(x). Then the respective process φt has the form

(8)

φt(B) = ε−1

∫ t

0

σ−2(x0 +Bs)ds =

∫ t

0

σ−2(x0 +Bs)d
s

ε
= |p = s

ε
|

=

∫ t/ε

0

σ−2(x0 +Bpε)dp =

∫ t/ε

0

σ−2(x0 +
√
εW̃ ε

p )dp, W̃ ε
p =

1√
ε
Bpε.

Note that W̃ ε is a Wiener process. Define the transformation η : C([0,∞)) → C([0,∞))
as follows:

(9) [η(f)](t) =

∫ t

0

σ−2(x0 + f(s))ds, t ∈ [0,∞), f ∈ C([0,∞)).

To simplify the notation, we write ηt(f) = [η(f)](t) in what follows. In this notation,

identity (8) takes the form φt(B) = ηt/ε(
√
εW̃ ε). Hence, by Proposition 1, the process

Xε
t = Bφ−1

t
+ x0 =

√
εW̃ ε

τε
t
+ x0, τεt := η−1

t (
√
εW̃ ε)

for every ε > 0 is a weak solution to (1) with this ε. Therefore, formula (2) with the
function F : C([0,∞)) → C([0,∞)) defined by

(10) [F (f)](t) = f(η−1
t (f)) + x0, t ≥ 0

provides a weak solution to (1). Here, it is irrelevant whether to write W̃ ε or W̃ , because
we are interested in the weak solution to (1), only.

It is well known that, for a Wiener process W̃ , the respective family {√εW̃} satisfies
LDP with a good rate function I, which equals

I(f) =
1

2

∞∫
0

(ḟ(s))2ds

if f ∈ C([0,∞)) is an absolutely continuous function with f(0) = 0, ḟ ∈ L2([0,∞)), and
I(f) = ∞ otherwise. For the Wiener process defined on [0, T ] and the respective family
of random elements in C([0, T ]), a similar statement can be found in Chapter 3, §2 [1];
the proof therein can be extended easily to the case of the Wiener process defined on
[0,∞).

3.2. Semicontraction principles. In this section, we recall some constructions and
statements from work [6], which will be used below.

Let the family Xε, ε > 0 of random elements taking values in S satisfy LDP with a
good rate function I. Let S′ be another Polish space, and let F : S → S′ be some Borel
measurable function. Consider the family Y ε = F (Xε), ε > 0. Denote, by UF , the set of
continuity points for the function F and assume that the set ΔF = S\UF of discontinuity
points for F is negligible in the sense that

(11) lim sup
ε→0

ε logP (Xε ∈ ΔF ) = −∞.

For arbitrary δ > 0, define

Ξδ(y) = {x ∈ S : ∃x̃ ∈ UF such that d(x, x̃) < δ, d′(F (x̃), y) < δ},
Θδ(y) = {x ∈ S : ∃x̃ ∈ UF such that d(x, x̃) < δ, d′(F (x̃), y) < δ, I(x̃) ≤ I(x) + δ},

where d, d′ are respective metrics in S, S′, and put

Jδ(y) = inf
x∈Ξδ(y)

I(x), J(y) = lim
δ→0

Jδ(y), Jδ(y) = inf
x∈Θδ(y)

I(x), J(y) = lim
δ→0

Jδ(y);

here, the limits w.r.t. δ exist because the families of sets {Ξδ(y), δ > 0}, {Θδ(y), δ > 0}
are monotonous.
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Note that the functions J, J defined above are lower semicontinuous (see Proposition
3 in [6]).

Proposition 2. (Semicontraction principles; [6], Lemma 4).

(1) For the family Y ε, ε > 0, the lower bound (3) holds true with the rate function J
for every open set A ⊂ S′.

(2) For the family Y ε, ε > 0, the upper bound (4) holds true with the rate function J
for every compact set B ⊂ S′.

Under the additional assumptions on the functions J, J, and F, the above statement
provides LDP for the family Y ε, ε > 0 either in the weak or standard form.

Proposition 3. ([6], Theorem 5).

(1) If J = J ≡ J, then the family Y ε, ε > 0 satisfies the weak LDP with the rate
function J.

(2) Let, in addition, the function satisfy the following condition:

(12) for every compact set K ⊂ S, the closure of the set F (UF

⋂
K) is compact.

Then the family Y ε, ε > 0 satisfies LDP with the good rate function J.

4. Proof of Theorem 1

We put S = S′ = C([0,∞)) with the metric d = d′ defined by (5) and apply Proposition

3 with Xε instead of Y ε,
√
εW̃ instead of Xε, and F defined by (10). To do that, we

need to verify condition (11), condition (12), and the identity

(13) J(g) = J(g) = J(g), g ∈ S

with J defined in the statement of Theorem 1; here and below, we write f, g, etc. instead
of x, y, etc.

The main difficulty in the proof is represented by identity (13). We separate the
respective proof and show firstly the inequality J(g) ≤ J(g), and then the inequality
J(g) ≥ J(g). By the definition of the functions J, J, we have J ≥ J, which would yield
(13).

4.1. Auxiliary statements. In this section, we provide auxiliary statements, which
gives one an opportunity to construct the continuity points for the function F. Since the
set UF of continuity points is involved substantially in the construction of the functions
J, J, such statements will be crucial for the proof of identity (13).

For given x0 ∈ R and the function σ, we define a transformation η : S → S by formula
(9), and a transformation π : S → S by

[π(f)](t) = η−1
t (f), f ∈ S,

where the inverse function is taken w.r.t. the time argument; that is, [π(f)](t) = u ⇐⇒
ηu(f) = t. In what follows, we denote πt(f) = [π(f)](t).

Lemma 1. Let a function f ∈ S be such that

(14) λ{s : f(s) ∈ Δσ} = 0,

where λ is the Lebesgue measure on R+.
Then both the transformations η and π are continuous at the point f.

Proof. Consider an arbitrary sequence fn → f in S. Then the sequence of functions
fn, n ≥ 1 converge to f point-wise. Consequently, for every s such that f(s) 
∈ Δσ, we
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have σ−2(fn(s)) → σ−2(f(s)), n → ∞. Then, by the dominated convergence theorem,
we have, for every t > 0,∫ t

0

∣∣σ−2(x0 + fn(s))− σ−2(x0 + f(s))
∣∣ ds→ 0, n→ ∞,

which clearly yields η(fn) → η(f), n → ∞ in S. This proves the continuity of the trans-
formation η at the point f.

Now, let us prove the continuity of the transformation π. Assume the contrary, i.e. let
there exist a sequence fn → f in S such that, for some T > 0,

sup
t∈[0,T ]

|πt(f)− πt(fn)| 
→ 0.

Choosing, if necessary, a subsequence, we can assume without loss of generality that
there exists a sequence tn → t ∈ [0, T ] such that

sn := πtn(f) → s, s′n := πtn(fn) → s′, and s 
= s′.

Because η is continuous at the point f and

tn = ηsn(f) = ηs′n(fn),

we pass to the limit as n→ ∞ and obtain t = ηs(f) = ηs′ (f), which yields∫ s′

s

σ−2(x0 + f(r))dr = 0.

Since s 
= s′, and σ−2 is positive, this brings a contradiction, which proves the required
statement. �

Corollary 1. Under the conditions of Lemma 1, the transformation F defined by (10)
is continuous at the point f ∈ S.

In the following lemma, we give a sufficient condition for (14) in the terms of the
derivative of the function f.

Lemma 2. Let a function f be absolutely continuous, and let its derivative ḟ , which is
well defined λ-a.e., be square integrable and satisfy the condition

(15) λ{s : ḟ(s) = 0} = 0.

Then the measure

λf (A) = λ{s : f(s) ∈ A}, A ∈ B(R)
is absolutely continuous w.r.t. the Lebesgue measure. In particular, (14) holds true,
because the set Δσ has zero Lebesgue measure.

Proof. For a given measurable set E ⊂ [0,+∞) and v ∈ R, denote, by N(f, E, v), the
number of the points at the sets {x ∈ E : f(x) = v}. The function f belongs locally
to the Sobolev class W 1

p with p = 2. Hence, we can apply Corollary 2.4.4 in [8] (note

that this corollary requires f ∈ W 1
p,loc with some p greater than 1) and get that, for

(the continuous modification of) the function f, the function N(f, E, ·) is measurable; in
addition, for every bounded measurable g on R,

(16)

∫
E

g(f(s))|ḟ(s)|ds =
∫
R

g(v)N(f, E, v)dv.

Let A be a set of zero Lebesgue measure. Put g(v) = IA(v), the indicator function of
this set. Then the right-hand side part of (16) equals 0. On the other hand,

g(f(s)) = If(s)∈A = If−1(A)(s).



106 ALEXEI M. KULIK AND DARYNA D. SOBOLEVA

Hence, if we put E = [0,∞), (16) yields∫ ∞

0

If−1(A)(s)|ḟ(s)|ds = 0.

Because |ḟ(s)| > 0 λ-a.e., we obtain

λf (A) =

∫ ∞

0

If−1(A)(s)ds = 0,

which means that the measure λf is absolutely continuous. �

Denote, for f ∈ S,

ζt(f) =

∫ t

0

σ2(f(s))ds

and write ζ−1
t (f) for the function inverse to ζt(f) w.r.t. the time variable.

Lemma 3. Let f, d ∈ S be such that

(17) x0 + f(t) = g(ζ−1
t (g)), t ≥ 0.

Then

πt(f) = ζt(g), t ≥ 0.

Proof. Since π(f) is the inverse transformation for η(f) w.r.t. the time variable, the
required statement is equivalent to the following:

ηζt(g)(f) = t, t ≥ 0.

The latter relation can be obtained straightforwardly:

ηζt(g)(f) =

∫ ζt(g)

0

σ−2(x0 + f(s))ds = |s = ζu(g), ds = σ2(g(u))du| =

=

∫ t

0

σ−2(x0 + f(ζu(g)))σ
2(g(u))du = t.

In the last identity, we have used (17) with ζu(g) instead of t. �

4.2. Proof of the inequality J(g) ≤ J(g). When J(g) = ∞, the required statement
is trivial. Henceforth, we assume in this section that J(g) < ∞. Therefore, g ∈ S is an
absolutely continuous function with g(0) = x0 and ġ ∈ L2([0,∞)).

Fix some absolutely continuous function χ with χ(0) = 0 and χ̇ ∈ L2((0,∞)) such
that χ̇ 
= 0 λ-a.e. Put ga(t) = g(t)+aχ(t), a > 0. Then, for every a 
= b, the sets {ġa = 0}
and {ġb = 0} do not have common points at the set {χ̇ 
= 0}. Therefore, there exists the
at most countable set Ag,χ ⊂ R such that, for any a 
∈ Ag,χ, the respective function ga

satisfies (15). We fix a sequence an → 0 with an 
∈ Ag,χ and write gn = gan = g + anχ.
Clearly, every function gn satisfies (15) by the construction; in addition, we have

ġn → ġ, n→ ∞ in L2((0,∞)) and gn(t) → g(t), n→ ∞ for every t.
Let us construct the sequence fn ∈ S such that F (fn) = gn. To do that, we put

fn(t) = gn(ζ
−1
t (gn))− x0.

Then, by Lemma 3 and (10),

gn(t) = x0 + fn(ζt(gn)) = x0 + fn(πt(fn)) = x0 + fn(η
−1
t (fn)) = [F (fn)](t), t ≥ 0.

We have fn(t) = gn(ηt(fn)) − x0, and η·(gn) is a Lipschitz function w.r.t. the time
variable, because it is defined as an integral with bounded integrand. Because every gn
is an absolutely continuous function, this means that every fn is absolutely continuous,



LARGE DEVIATIONS FOR ONE-DIMENSIONAL SDE . . . 107

as well. Next, one can see easily that the derivative of fn (recall that this derivative is
well defined for λ-a.a. t) satisfies

(18) ḟn(t) =
ġn(ηt(fn))

σ2(gn(ηt(fn)))
for λ-a.a. t.

Indeed, using the formula for the derivative of the inverse function, one can write

ġn(t) = ḟn(η
−1
t (fn))

d

dt
[η−1

t (fn)] = ḟn(η
−1
t (fn))

((
d

dt
ηt(fn)

)
|t=η−1

t (fn)

)−1

= ḟn(η
−1
t (fn))σ

2(fn(η
−1
t (fn)) = ḟn(η

−1
t (fn))σ

2(gn(t)).

This means that, for λ-a.a. t,

ḟ(η−1
t (f)) =

ġ(t)

σ2(g(t))
.

This is equivalent to (18), because both the function η·(fn) : [0,∞) → [0,∞) and its
inverse one π·(fn) = ζ·(gn) are Lipschitz and, therefore, transform the Lebesgue measure
into an absolutely continuous one.

It follows from (18) that every fn satisfies (15). Then fn satisfies (14) by Lemma 2,
and fn is a continuity point for the mapping F by Lemma 1.

On the other hand, fn(0) = 0 by construction, because gn(0) = x0. Using (18) once
again, we obtain

I(fn) =
1

2

∫ ∞

0

(ḟn(t))
2dt =

1

2

∫ ∞

0

(ġn(ηt(fn)))
2

σ4(gn(ηt(fn)))
dt

=
∣∣∣s = ηt(fn), ds = σ−2(x0 + fn(t))dt

∣∣∣
=

1

2

∫ ∞

0

(ġn(s))
2

σ2(gn(s))
ds = J(yn).

In what follows, we study the limit behavior of the integrals I(fn) = J(gn). We begin
with the following simple auxiliary statement.

Lemma 4. Let hn → h in L2((0,∞)). For a uniformly bounded sequence of functions
{θn(t)} such that θn(t) → θ(t), t ∈ A for a given measurable set A,∫

A

h2n(t)θn(t)dt →
∫
A

h2(t)θ(t)dt, n→ ∞.

Proof follows directly from the dominated convergence theorem.

Lemma 5. lim
n→∞ J(gn) = J(g).

Proof. Divide the integration interval (0,∞) into three sets

A = {t : y(t) 
∈ Δσ}, B = {t : y(t) ∈ Δσ, ẏ(t) = 0}, C = {t : y(t) ∈ Δσ, ẏ(t) 
= 0}.
Put θn(t) = σ−2(gn(t)), θ(t) = σ−2(g(t)), hn(t) = ġn(t), and h(t) = ġ(t) in the previous
lemma. Then ∫

A

(ġn(t))
2

σ2(gn(t))
dt→

∫
A

(ġ(t))2

σ2(g(t))
dt, n→ ∞.

Next, because the derivative ġ(t) equals zero on the set B, the equality∫
B

(ġ(t))2

σ2(g(t))
dt = 0

holds. Moreover, because σ−2 is bounded and an → 0, we have∫
B

(ġn(t))
2

σ2(gn(t))
dt = a2n

∫
B

(χ̇(t))2

σ2(gn(t))
dt → 0 =

∫
B

(ġ(t))2

σ2(g(t))
dt.
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Finally, the Lebesgue measure of the set C equals zero by Lemma 2. Hence, the respective
integrals are negligible. �

Let us finalize the proof. We note that gn → g in S, and every fn is a continuity point
for F. Therefore, for any δ > 0, there exists N such that fn ∈ Θδ(g), n ≥ N. To see that,

one can take the continuity point f̃ in the definition of Θδ(g) equal to fn. Therefore,

Jδ(g) = inf
f∈Θδ(g)

I(f) ≤ lim
n→∞ I(fn) = J(g).

Because δ > 0 is arbitrary, this provides the required inequality J(g) ≤ J(g).

4.3. Proof of the inequality J(g) ≥ J(g). We consider separately two cases: J(g) <∞
and J(g) = ∞. In the first case, the required inequality is provided by the following
lemma.

Lemma 6. Let J(g) <∞. Then, for every γ > 0, there exists δ > 0 such that

inf
f∈Ξδ(g)

I(f) > J(g)− γ.

Proof. Assume the contrary; that is, let there exist some γ > 0 and the sequences of
functions fn, f̃n, n ≥ 1 such that f̃n ∈ UF , d(fn, f̃n) < 1/n, d(g, F (f̃n)) < 1/n, and

I(fn) ≤ J(g)− γ.

Since the rate functional I is “good”, the sequence fn, n ≥ 1 belongs to the compact
set {f : I(f) ≤ a} with a = J(g) − γ. Passing, if necessary, to a subsequence, we can

assume that fn → f, and, therefore, f̃n → f. In addition, we have F (f̃n) → g.

Denote g̃n = F (f̃n) and gn(t) = g̃n(t) + (fn − f̃n)(ζt(g̃n)). Then we have

f̃n(t) = g̃n(ζ
−1
t (g̃n)), fn(t) = gn(ζ

−1
t (g̃n)).

Clearly, gn → g and g̃n → g in S. Performing calculations similar to those made in the
previous section, we can represent the rate function I(fn) in the form

(19)

I(fn) =
1

2

∫ ∞

0

(ḟn(t))
2dt =

1

2

∫ ∞

0

(ġn(ζ
−1
t (g̃n)))

2 · 1

σ4(g̃n(ζ
−1
t (g̃n)))

dt

=
1

2

∫ ∞

0

(ġn(s))
2

σ2(g̃n(s))
ds.

Consider the set A = {s : ġ(s) 
= 0} and denote

hn(s) =
ġn(s)

σ(g̃n(s))
IA(s), h(s) =

ġ(s)

σ(g(s))
IA(s).

Then

J(g) =
1

2
‖h‖2L2

, I(fn) ≥ 1

2
‖hn‖2L2

.

We will show that there exists

(20) hn → h, n→ ∞ weakly in L2((0,∞)).

Because (20) yields
‖h‖L2 ≤ lim inf

n→∞ ‖hn‖L2,

this will give the contradiction with the assumption made above, which will complete
the proof of the lemma.

First, we note that

(21) ġn → ġ, n→ ∞ weakly in L2((0,∞)).

Indeed, because ∫ ∞

0

(ġn(s))
2

σ2(g̃n(s))
ds ≤ 2I(fn) ≤ 2J(g)− 2γ
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and σ is bounded, the sequence ġn, n ≥ 1 is bounded in L2((0,∞)). Therefore, every
its subsequence contains a weakly convergent subsequence, say ġnk

, k ≥ 1 (see, e.g., [9],
Chapter IV §3). Denote the respective limit by q. Because gn → g in S, one has, for
every t,

g(t) = lim
n→∞

[
gn(0) + (ġn, I[0,t])L2

]
= g(0) + lim

k→∞
(ġnk

, I[0,t])L2 = g(0) +

∫ t

0

q(s) ds.

This means that g is absolutely continuous and ġ = q ∈ L2((0,∞)). Because every
subsequence of ġn, n ≥ 1 contains a subsequence weakly convergent to ġ, we have (21).

Now we can prove (20). Take an arbitrary u ∈ L2((0,∞)) and write

(hn, u)L2 = (ġn, vn)L2 , (h, u)L2 = (ġ, v)L2

with

vn(s) =
u(s)

σ(g̃n(s))
IA(s), v(s) =

u(s)

σ(g(s))
IA(s).

By Lemma 2, one has g(s) 
∈ Δσ for λ-a.a. s ∈ A. Therefore,

σ(g̃n(s)) → σ(g(s)),

because g̃n → g in S. Since σ is separated from zero, this provides by the dominated
convergence theorem that vn converges to v (strongly) in L2((0,∞)). Then, by (21), we
obtain

(hn, u)L2 = (ġn, vn)L2 → (ġ, v)L2 = (h, u)L2 ,

which completes the proof of (20). �

In the case J(g) = ∞, the required inequality is provided by the following lemma.

Lemma 7. Let J(g) = ∞. Then, for every N > 0, there exists δ > 0 such that

inf
f∈Ξδ(g)

I(f) > N.

Proof. Let g(0) 
= x0 and δ <
(
|g(0) − x0| ∧ 1

)
/2. Then, for every functions f, f̃ such

that d(f, f̃) < δ, d(g, F (f̃)) < δ, we have f(0) 
= 0 because

[F (f̃)](0) = f̃(0) + x0

(see (10)). This means that, for such δ,

inf
f∈Ξδ(g)

I(f) = ∞.

Now, let g(0) = x0. Like the proof of the previous lemma, we assume the contrary. In

other words, we suppose that, for some N, there exist the sequences fn, f̃n, n ≥ 1 such
that

f̃n ∈ UF , d(fn, f̃n) < 1/n, d(g, F (f̃n)) < 1/n, I(fn) ≤ N.

Define the functions gn, g̃n in the same way as in the previous proof. Then representation
(19) holds true. Like the proof of the previous lemma, this representation and the
assumptions I(fn) ≤ N and gn → g in S imply that g is absolutely continuous, and (21)
holds true. Because g(0) = x0, g is absolutely continuous with∫ ∞

0

(ġ(s))2 ds ≤ lim inf
n→∞

∫ ∞

0

(ġn(s))
2 ds <∞,

and σ is separated from zero, we have J(g) <∞. This contradiction provides the required
statement. �
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4.4. Completion of the proof of Theorem 1. Using the Fubini theorem, one can
show easily that, for every ε > 0, the expectation of the random variable

λ{s : √εW̃s ∈ Δσ}
equals zero. Because this random variable is non-negative, this means that

λ{s : √εW̃s ∈ Δσ} = 0

with probability one. Hence, by Lemma 1,

P (
√
εW̃ ∈ ΔF ) = 0,

which proves (11). Condition (12) can be verified easily using the Arzelà–Ascoli theorem
and the fact that the time change transformation involved into definition (10) of the
mapping F is Lipschitz.

We have verified (11), (12), and identity (13). Hence, we can apply Proposition 3,
which provides the required statement. �
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