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ELENA USOLTSEVA AND ALEXANDER KUKUSH

NEW FUNCTIONAL ESTIMATOR IN QUADRATIC
ERRORS-IN-VARIABLES MODEL

A quadratic structural errors-in-variables model is considered. Functional estimators
that are generated by estimating the functions conditionally unbiased given the latent
variable are studied. Those estimators are constructed without the knowledge of the
latent variable distribution. A problem is studied how to construct an estimator from
the class which has the smallest, in certain sense, asymptotic covariance matrix.

1. Introduction

We study a structural regression model

(1) y = βTρ(x) + ε, ρ(x) = (1, x, · · · , xm)T .

Here, m ≥ 1 is fixed, β = (β0, β1, · · · , βm)T ∈ R(m+1)×1, the regressor x is a random
variable, and the observation error ε is a centered random variable. The regressor x is
unobserved, a surrogate datum

(2) w = x+ u

is observed instead, whereas x, u, and ε are independent. The model is normal; that is,

(3) x ∼ N(μ, σ2
x), ε ∼ N(μ, σ2

ε), u ∼ N(μ, σ2
u).

All the variances are positive, and σ2
u is the only known parameter.

In model (1) to (3), a version of the quasi-likelihood estimator is the optimal estimator
for β; see [2]. The construction of this estimator is based on the normality of x. Therefore,
it is reasonable to consider a less efficient but robust estimator, e.g., the corrected score
(CS) estimator (see [4] for the definition of the CS estimator; another name for this
estimator is adjusted least squares). This estimator is robust in the sense that it is
consistent for any distribution of x (the only restriction is that a certain moment of x
should be finite).

In the present paper, E, Var, and Cov denote the expectation, variance (of a random
variable), and covariance matrix, respectively.

We now introduce a class SL of linear-in-y estimating functions of the form

(4) SL = SL(w, y, β) = p(w)y −Q(w)β

which are such that, for all β ∈ R(m+1)×1,

(5) Eβ(SL|x) = 0.

The functions p(·) and Q(·) are C2-smooth functions valued in R(m+1)×1 and
R(m+1)×(m+1), respectively. We assume that components of those functions belong to the
Schwarz space S′ of slowly growing distributions; therefore, the deconvolution problems
considered below deal with the functions from S′ and have unique solutions.
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Consider independent copies (xi, wi, yi) of model (1) to (3). We observe the couples
(wi, yi), i = 1, . . . , n.

For an estimating function sL ∈ SL, the estimator β̂L is defined as a measurable
solution to the equation

(6)
n∑
i=1

sL(wi, yi, β) = 0, β ∈ R(m+1)×1.

In fact,

(7) β̂L =

(
1
n

n∑
i=1

Q(wi)

)−1

· 1
n

n∑
i=1

p(wi)yi.

We assume that, within the class SL, the matrix EQ(w) is nonsingular. By the strong
law of large numbers, Tn := 1

n

∑n
i=1Q(wi) −→ EQ(w) as n → ∞, a.s. Here, the limit

is nonsingular, and then the matrix Tn is nonsingular for all n ≥ n0(w), a.s. Thus,
estimator (7) is well-defined for all n ≥ n0(w), a.s. To be precise, we set β̂L(w) = 0 if
the matrix Tn(w) is singular.

We mention that SL contains the estimating function of the CS estimator. It is
straightforward that the estimator β̂L is strictly consistent. Then, according to the
theory of estimating equations, it is asymptotically normal, i.e.,

√
n(β̂L−β) → N(0,ΣL)

in distribution. The matrix ΣL is called the asymptotic covariance matrix (ACM) of the
estimator and can be computed by the sandwich formula, see [1],

(8) ΣL = A−1
L BLA

−T
L , AL = −E

∂SL
∂β

, BL = ESLSTL .

Hereafter, A−T
L :=

(
A−1
L

)T
.

In [6], an attempt was made to prove the optimality of the CS estimator within the
class SL. This was done only for the case of small non-intercept coefficients β1, · · · , and
βm. Moreover, it was mentioned in that paper that there exists β such that the CS
estimator is not optimal within the class SL.

In the present paper, we are looking for the estimator within this class, which is more
efficient, to some extent, as compared with the CS estimator. We consider the casem = 2
only, which corresponds to the quadratic model.

Let s1, s2 ∈ SL and Σ1, Σ2 be the ACMs of the corresponding estimators β̂1 and β̂2.
We call β̂1 strictly more efficient than β̂2 if Σ1 < Σ2. Hereafter, the inequality between
symmetric matrices of the same size is understood in the Loewner order, i.e., Σ1 < Σ2

and Σ1 ≤ Σ2 means that Σ2−Σ1 is positive definite or positive semidefinite, respectively.
The paper is organized as follows. Section 2 computes the ACM of the estimator β̂L

and presents our main result. Section 3 concludes, and proofs are given in Appendix.

2. Asymptotic covariance matrix and main result

For any sL ∈ SL, we compute AL and BL given in (8). We have

AL = −E
∂SL
∂βT

= E(Q(w)) = E[E(Q|x)] = E[E(p|x)ρT ] =

= E[E(pρT |x)] = E(pρT ) = E[E(pρT |w)] = E[pE(ρT |w)] = E(pρTw),
where we set

ρTw = E(ρT (x)|w);
BL = ESLSTL = E(py −Qβ)(py −Qβ)T = E([(y −M)p+ (Mp−Qβ)]×
×[(y −M)p+ (Mp−Qβ)]T ) = EvppT + E(Mp−Qβ)(Mp−Qβ)T =

= EvppT + Cov(Mp−Qβ).
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Here, we denote

(9) M = E(y|w) = βTEρ(x),

(10) v = Var(y|w) = Var(βT ρ(x)|w) + σ2
ε .

From (8), we have finally

ΣL =
(
E(pρTw)

)−1 (
EvppT + Cov(Mp−Qβ)

) (
E(pρTw)

)−T
.

We consider model (1) to (3) with m = 2. The CS estimator is generated by SC ∈ SL,

SC = pC(w)−QC(w)β.

The vector function pC(w) and the matrix-valued function QC(w) are polynomials in w
which satisfy the deconvolution equations

E (pC(w)|x) = ρ(x),

E (QC(w)|x) = ρ(x)ρ(x)T .

We introduce the re-corrected estimating function

Src = prc(w)y −Qrc(w)β,

where prc(w) and Qrc are (polynomial) solutions to the deconvolution problems

E(prc(w)|x) =

⎛⎝ 1
x

x2 + δx3

⎞⎠ ,

E(Qrc(w)|x) =

⎛⎝ 1
x

x2 + δx3

⎞⎠ ρ(x)T .

Here, δ is a real parameter; |δ| will be small enough.
We want to compare the corresponding ACMs Σrc(δ) and Σc of the estimator gener-

ated by Src and the CS estimator. Because Σc = Σrc(0), we compare, in fact, Σrc(δ)
and Σrc(0).

Theorem 2.1. It holds (detΣrc)
′ (0) 
= 0 for almost all parameters (βT , μ, σ2

x, σ
2
ε)T w.r.t.

Lebesgue measure on R6.

The proof is given in Appendix.

Remark 2.1. Suppose that the true values of the parameters are ”typical” in the sense
that d := (detΣrc)

′ (0) 
= 0. For the observations (wi, yi), i = 1, . . . , n, based on the
quasi-likelihood estimator for β and the empirical mean and the empirical variance of
w, it is easy to construct a strongly consistent estimator θ̂n of the parameter vector
θ := (βT , μ, σ2

x, σ
2
ε)
T ; see [3]. The function d = d(θ) is a rational function; therefore, d̂ :=

d(θ̂n) is a strongly consistent estimator for d(θ). Then we set δ̂n = − δ0 · sign d(θ̂n), with
fixed δ0 > 0, and consider the estimating function S̃rc = Src(δ)|δ=�δn . The corresponding

estimator β̃rc coincides with β̂rc(δ)|δ=− δ0·sign d, for all n ≥ n0(ω), a.s. Therefore, the

ACMs Σ̃rc and Σrc(− δ0 · sign d) are equal. Then, for small enough δ0, det Σ̃rc < detΣc;
as a result, the volume of the asymptotic confidence ellipsoid for β will be smaller for
the estimator β̃rc than for the β̂c , for large n.
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3. Conclusion

We considered the normal quadratic (i.e., with m = 2) measurement error model (1) to
(3). The CS estimator of β is robust in the sense that it is (strictly) consistent without
the assumption about the normality of x. We have shown the way how to construct
another robust estimator which is more efficient than the CS estimator in the sense that
the new estimator yields a smaller volume of the asymptotic confidence ellipsoid for β.

4. Appendix

4.1. Auxiliary computations. For the estimating function (4) from the class SL, con-
dition (5) implies that a.s.

Eβ (p(w)y|x) = E (Q(w)|x) β,
E (p(w)|x) ρT (x)β = E (Q(w)|x) β.

Because this holds for each β ∈ Rm+1, we obtain

(11) px(x)ρT (x) = E (Q(w)|x) ,
where we denote

(12) px(x) = E (p(w)|x) .
Further, we want to expand the function Q(t), t ∈ R, for small σ2

u. The next Lemma is
a consequence of the expansions from [5].

Lemma 4.1. Let u ∼ N(0, σ2
u), and let g and h be smooth enough functions such that

Eg(t+ u) = h(t), t ∈ R.

Then, for all t ∈ R,

g(t) = h(t)− 1
2
h′′(t)σ2

u +R, as σ2
u → 0

holds, where ER = O(σ4
u).

Now, all remainder terms Ri below satisfy the condition ERi = O(σ4
u), as σ2

u → 0.
We apply Lemma 4.1 to relation (12) and obtain, for all t ∈ R, that

p(t) = px(t)− 1
2
p′′x(t)σ

2
u +R1.

Next, applying Lemma 4.1 to relation (11), we obtain

Q(t) = px(t)ρT (t)− 1
2
(px(t)ρT (t))′′σ2

u + R2 =

= px(t)ρT (t)− 1
2
(p′′x(t)ρ

T (t) + p′x(t)ρ
′T (t) + px(t)ρ′′T (t))σ2

u +R2.

We consider ρw = E(ρ(x)|w) =

⎛⎝ 1
μ1

μ2
1 + τ2

⎞⎠ , where

μ1 = μx +
σ2
x

σ2
x + σ2

x

(w − μ), τ2 =
σ2
uσ

2
x

σ2
u + σ2

x

.

Thus,

ρw =

⎛⎜⎜⎝
1

μx + σ2
x

σ2
x+σ2

x
(w − μ)(

μx + σ2
x

σ2
x+σ

2
x
(w − μ)

)2

+ σ2
uσ

2
x

σ2
u+σ2

x

⎞⎟⎟⎠ .
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We have

ΣL =
(
EpρTw

)−1 (
EvppT + Cov(Mp−Qβ)

) (
EpρTw

)−T
,

where

M = E(y|w) = βTρw = β0 + β1μ1 + β2(μ2
1 + τ2);

v = σ2
ε + Var(β1x+ β2x

2|w) = σ2
ε + τ2(β2

1 + 4μ1β1β2 + β2
2(4μ2

1 + 2τ2)).

Then

ΣL =
(
EpρTw

)−1 (
E
(
σ2
ε + τ2(β2

1 + 4μ1β1β2 + β2
2(4μ2

1 + 2τ2))
)
ppT+

+Cov(Mp−Qβ))
(
EpρTw

)−T
,

and we insert the approximations

τ2 =
σ2
uσ

2
x

σ2
u + σ2

x

≈ σ2
u(1−

σ2
u

σ2
x

) = σ2
u −

σ4
u

σ2
x

,

μ1 = μx +
σ2
x

σ2
x + σ2

x

(w − μ) ≈ w − σ2
u

σ2
x

(w − μ) +
σ4
u

σ4
x

(w − μ).

Hereafter instead of the equality A = B +O(σ6
u), as σ2

u → 0, we write A ≈ B.
Using these expansions, we write a conditional variance in the form

(13) v ≈ σ2
ε + σ2

u(β
2
1 + 4β1β2w + 4β2

2w
2) +

σ4
u

σ2
x

(2β2
2σ

2
x − β2

1 − 4β1β2w − 4β2
2w

2).

So, the following form of ACM for SL holds true:

ΣL ≈
(
EpρTw

)−1
E
(
σ2
ε + σ2

u(β
2
1 + 4β1β2w + 4β2

2w
2)+

(14) +
σ4
u

σ2
x

(2β2
2σ

2
x − β2

1 − 4β1β2w − 4β2
2w

2)
)
ppT + Cov(Mp−Qβ)

(
EpρTw

)−T
.

We will compute Σrc and Σals = Σrc(0). We have

pals(w) =

⎛⎝ 1
w

w2 − σ2
u

⎞⎠ , p = prc(w) =

⎛⎝ 1
w

w2 − σ2
u + δ(w3 − 3wσ2

u)

⎞⎠ .

Next,

EpρTw = E

⎛⎝ 1
x

x2 + δx3

x
x2

x3 + δx4

x2

x3

x4 + δx5

⎞⎠ =

=

⎛⎜⎜⎝
1
μ
μ2+

+δ
(
μ3 + 3μσ2

x

)
μ

μ2 + σ2
x

μ3 + 3μσ2
x+

+δ
(
μ4 + 6μ2σ2

x + 3σ4
x

)
μ2 + σ2

x

μ3 + 3μσ2
x

μ4 + 6μ2σ2
x + 3σ4

x+
+δ

(
μ5 + 10μ3σ2

x + 15σ4
x

)
⎞⎟⎟⎠ .

For fixed δ ∈ R, detEpρTw 
= 0 for almost all parameters (μ, σ2
x)T w.r.t. Lebesgue

measure on R2,

(15) det(EpρTw) = 2σ6
x + δμσ4

x(6σ
2
x − 10μ2).
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4.2. Proof of Theorem 2.1. We have proved that the determinant of the matrix
EpρTw |δ=0 doesn’t equal to zero. So we want to show that

(detΣrc)′(0) =
(
det

(
EpρTw

)) |δ=0
−3 ·

((
det(EvppT + Cov(Mp−Qβ))

)′
δ

(
detEpρTw

)−
−2

(
detEpρTw

)′
δ

(
det(EvppT + Cov(Mp−Qβ))

)) |δ=0 
= 0

for almost all parameters.
We will prove this, by selecting the matrix A consisting of summands of the entries

that do not have multipliers β2 and μ from the matrix EvppT + Cov(Mp−Qβ), i.e., it
is of the zero order in β2 and μ:⎛⎜⎜⎝

σ2
ε + β2

1σ
2
u − β2

1σ
4
u

σ2
x

0 σ2
εσ

2
x + β2

1σ
2
uσ

2
x − β2

1σ
4
u

0 (σ2
ε + β2

1σ
2
u)(σ

2
u + σ2

x) 3δσ2
x(σ

2
ε + β2

1σ
2
u)(σ

2
u + σ2

x)
σ2
εσ

2
x + β2

1σ
2
uσ

2
x − β2

1σ
4
u 3δσ2

x(σ
2
ε + β2

1σ
2
u)(σ

2
u + σ2

x) 2σ2
εσ

4
u + 4σ2

εσ
2
uσ

2
x + 3σ2

εσ
4
x+

+4β2
1σ

2
uσ

2
x(σ2

u + σ2
x)

⎞⎟⎟⎠
The derivative of the determinant (detΣrc)′(0) is an analytic function of all parameters

(βT , μ, σ2
x, σ

2
ε)T . Then

(detΣrc)′(0) ≈ det(EpρTw) · (detA)′ − 2(det(EpρTw))′ · detA

(det (EpρTw))3
|δ=0 .

The denominator of the latter fraction does not equal to zero for almost all parameters
(βT , μ, σ2

x, σ
2
ε)
T w.r.t. Lebesgue measure on R6; it equals 4μσ4

x(5μ
2 − 3σ2

x) · detA |δ=0 ,
because (detA)′ |δ=0 . Here,

detA |δ=0 = (σ2
ε + β2

1σ
2
u)(σ

2
u + σ2

x)
((

σ2
ε + β2

1σ
2
u −

β2
1σ

4
u

σ2
x

)(
2σ2

εσ
4
u + 4σ2

εσ
2
uσ

2
x+

+3σ2
εσ

4
x + 4β2

1σ
2
uσ

2
x(σ

2
u + σ2

x)
)− (

σ2
εσ

2
x + β2

1σ
2
uσ

2
x − β2

1σ
4
u

)2)
.

It does not equal to zero for almost all parameters (βT , μ, σ2
x, σ

2
ε)
T w.r.t. Lebesgue mea-

sure on R6. Thus, the fraction does not equal to zero as well.
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