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LÉVY APPROXIMATION OF IMPULSIVE RECURRENT PROCESS
WITH SEMI-MARKOV SWITCHING

The weak convergence of an impulsive recurrent process with semi-Markov switching
in the scheme of the Lévy approximation is proved. The singular perturbation prob-
lem for the compensating operator of an extended Markov renewal process is used to
prove the relative compactness.

1. Introduction

The Lévy approximation is still an active area of research in several theoretical and
applied directions. Since Lévy processes are now standard, the Lévy approximation is
quite useful to analyze complex systems (see, e.g., [1, 9]). Moreover, they are involved
in many applications, e.g., risk theory, finance, queueing, physics, etc. For a background
on the Lévy process see, e.g., [1, 9, 3].

In particular, in [5, Chapter 7 ], the following impulsive process was studied as partial
sums in a series scheme:

ξε(t) = ξε0 +
ν(t)∑
k=1

αεk(x
ε
k−1), t ≥ 0, ε > 0.(1)

Here, the random variables αεk(x), k ≥ 1 are supposed to be independent and perturbed
by a jump Markov process x(t), t ≥ 0. The embedded Markov chain xn, n ≥ 0 is defined
by xn = x(τn), n ≥ 0, where 0 = τ0 ≤ τ1 ≤ ... ≤ τn ≤ ... are the jump times of x(t), t ≥ 0.
The corresponding counting process of jumps ν(t) := max{k ≥ 0 : τk ≤ t}.

We propose to study a generalization of problem (1):

ξε(t) = ξε0 +
ν(t)∑
k=1

αεk(ξ
ε
k−1, x

ε
k−1), t ≥ 0, ε > 0.(2)

Here, the random variables αεk(u, x), k ≥ 1 depend on the process ξε(t), and the switching
process x(t), t ≥ 0 is a semi-Markov one.

We propose to study the convergence of (2) using a combination of two methods. The
one, based on the theory of semimartingales, is combined with a singular perturbation
problem for the compensating operator of an extended Markov renewal process. So, the
method includes two steps.

At the first step, we prove the relative compactness of the semimartingale representa-
tion of a family ξε, ε > 0, by proving the following two facts (see [2, Chapter 3]):

lim
c→∞ sup

ε≤ε0
P{sup

t≤T
|ξε(t)| > c} = 0, ∀ε0 > 0, T > 0
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known as the compact containment condition, and

E|ξε(t)− ξε(s)|2 ≤ k|t− s|,
for some positive constant k independent of ε.

At the second step, we prove the convergence of the extended Markov renewal process
ξεn, x

ε
n, τ

ε
n, n ≥ 0, by using the singular perturbation technique as presented in [5, Chapter

3].
Finally, we apply Theorem 6.3 from [5].
Similar results in case of the Poisson approximation of processes with locally indepen-

dent increments with Markov switching are presented in [6].
The paper is organized as follows. In Section 2, we present the time-scaled impulsive

process (2) and the switching semi-Markov process. In the same section, we present
the main results of the Lévy approximation. In Section 3, we present the proof of the
theorem.

2. Main results

Let us consider the space Rd endowed with a norm | · | (d ≥ 1), and (E, E), a standard
phase space, (i.e., E is a Polish space, and E is its Borel σ-algebra). For a vector v ∈ Rd

and a matrix c ∈ Rd×d, v∗ and c∗ denote their transpose, respectively. Let C3(Rd) be a
measure-determining class of real-valued bounded functions such that g(u)/|u|2 → 0 as
|u| → 0 for g ∈ C3(Rd) (see p.354 in [4] and [5, Chapter 7 ]).

For any ε > 0 and any sequence zk, k ≥ 0 of elements from Rd × E, the random
variables αεk(zk−1), k ≥ 1 are supposed to be independent. Let us denote, by Gεu,x, the
distribution function of αεk(x), that is,

Gεu,x(dv) := P(αεk(u, x) ∈ dv), k ≥ 0, ε > 0, x ∈ E, u ∈ Rd.

The switching semi-Markov process x(t), t ≥ 0 on the standard phase space (E, E) is
defined by the semi-Markov kernel

Q(x,B, t) = P (x,B)Fx(t), x ∈ E,B ∈ E , t ≥ 0,

which defines the associated Markov renewal process xn, τn, n ≥ 0:

Q(x,B, t) = P(xn+1 ∈ B, τn+1 − τn ≤ t|xn = x) = P(xn+1 ∈ B|xn = x)×
P(τn+1 − τn ≤ t|xn = x) =: P (x,B)Fx(t).

The corresponding counting process of jumps ν(t) := max{k ≥ 0 : τk ≤ t}.
We make the following assumption for the counting process ν(t):∫ t

0

E[ϕ(s)dν(s)] < l1

∫ t

0

E(ϕ(s))ds(3)

for any nonnegative, increasing ϕ(s) and l1 > 0 that does not depend on ϕ(s).
The impulsive processes ξε(t), t ≥ 0, ε > 0 on Rd in the series scheme with small series

parameter ε→ 0, (ε > 0) are defined by the sum ([5, Section 9.2.1])

ξε(t) = ξε0 +
ν(t/ε2)∑
k=1

αεk(ξ
ε
k−1, x

ε
k−1), t ≥ 0.(4)

Here,

ξεn := ξ(ε2τn) = ξε0 +
n∑
k=1

αεk(ξ
ε
k−1, x

ε
k−1).

It is worth noticing that the coupled process ξε(t), xε(t), t ≥ 0, is a Markov additive
process (see, e.g., [5, Section 2.5]).
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The Lévy approximation of the Markov impulsive process (4) is considered under the
following conditions.

C1: The semi-Markov process x(t), t ≥ 0 is uniformly ergodic with the stationary
distribution

π(dx)q(x) = qρ(dx), q(x) := 1/m(x), q := 1/m,

m(x) := Eθx =
∫ ∞

0

F x(t)dt,m :=
∫
E

ρ(dx)m(x),

ρ(B) =
∫
E

ρ(dx)P (x,B), ρ(E) = 1.

C2: Lévy approximation. The family of impulsive processes ξε(t), t ≥ 0 satisfies
the Lévy approximation conditions [5, Section 9.2].

L1: Initial-value condition:

sup
ε>0

E|ξε0 | ≤ C <∞
and

ξε0 ⇒ ξ0.

L2: Approximation of the mean values:

aε(u;x) =
∫

Rd

vGεu,x(dv) = εa1(u;x) + ε2[a(u;x) + θεa(u;x)],

and

cε(u;x) =
∫

Rd

vv∗Gεu,x(dv) = ε2[c(u;x) + θεc(u;x)],

where a1(u;x), a(u;x) and c(u;x) are bounded functions.
L3: Poisson approximation condition for the intensity kernel (see [5, Chapter

9])

Gεg(u;x) =
∫

Rd

g(v)Gεu,x(dv) = ε2[Gg(u;x) + θεg(u;x)]

for all g ∈ C3(Rd), and the kernel Gg(u;x) is bounded for all g ∈ C3(Rd),
that is,

|Gg(u;x)| ≤ Gg (a constant depending on g).

Here,

Gg(u;x) =
∫

Rd

g(v)Gu,x(dv), g ∈ C3(Rd).(5)

The above negligible terms θεa, θ
ε
c , and θεg satisfy the condition

sup
x∈E

|θε· (u;x)| → 0, ε→ 0.

L4: Balance condition:∫
E

ρ(dx)a1(u;x) = 0.

In addition, the following conditions are used:
C3: Uniform square integrability:

lim
c→∞ sup

x∈E

∫
|v|>c

vv∗Gu,x(dv) = 0.

C4: Linear growth: there exists a positive constant L such that

|a(u;x)| ≤ L(1 + |u|), and |c(u;x)| ≤ L(1 + |u|2),
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and, for any real-valued non-negative function f(v), v ∈ Rd such that∫
Rd\{0}

(1 + f(v))|v|2dv <∞,

we have
|Gu,x(v)| ≤ Lf(v)(1 + |u|).

The main result of our work is the following.

Theorem 2.1. Under conditions C1−C4, the weak convergence

ξε(t) ⇒ ξ0(t), ε→ 0

takes place.
The limit process ξ0(t), t ≥ 0 is a Lévy process defined by a generator L of the form

Lϕ(u) = (â(u)− â0(u))ϕ′(u) +
1
2
σ2(u)ϕ′′(u) +(6)

λ(u)
∫

Rd

[ϕ(u + v)− ϕ(u)]G0
u(dv),

where

â(u) = q

∫
E

ρ(dx)a(u;x), â0(u) =
∫
E

vGu(dv),

Gu(dv) = q

∫
E

ρ(dx)Gu,x(dv), â2
1(u) = q

∫
E

ρ(dx)a2
1(u;x),

ã1(u;x) := q(x)
∫
E

P (x, dy)a1(u;x), c0(u;x) =
∫
E

vv∗Gu,x(dv),

σ2(u) = 2
∫
E

π(dx){ã1(u;x)R̃0ã
∗
1(u;x)+

1
2
[c(u;x)− c0(u;x)]} − â2

1(u), σ2(u) ≥ 0

λ(u) = Gu(Rd), G0
u(dv) = Gu(dv)/λ(u),

and R̃0 is the potential operator of the embedded Markov chain.

Remark 2.1. The limit Lévy process consists of three parts: deterministic drift, diffusion
part, and Poisson part.

There are some possible cases:
1: If â(u)− â0(u) = 0, then the limit process has no deterministic drift.
2: If σ2(u) = 0, then the limit process has no diffusion part. As a variant of this

case, we note that if c(u;x) = c0(u;x), then also a1(u;x) = 0, and we obtain the
conditions of the Poisson approximation after the renormalization ε2 = ε̃ (see,
e.g., Chapter 7 in [5]).

Remark 2.2. In work [5] (Theorem 9.3), an analogous result was obtained for an impul-
sive process with Markov switching. If we study an ordinary impulsive process without
switching, we should obtain σ2 = E(αεk)

2−(E(αεk))
2 = (c−c0)−a2

1. This result correlates
with the similar results from [4, Chapter IX]. In case of our Theorem, this may be easily
shown, but it is not obvious in [5] (Theorem 9.3).

The difference is that we used R̃0 – the potential operator of an embedded Markov
chain instead of R0 – the potential operator of a Markov process. Due to this circum-
stance, our result obviously correlates with other well-known results.

Remark 2.3. The asymptotics of the second moment in condition L1 contains the second
modified characteristic c(u;x) (see Corollary 4.2 at p.555 in [4]). This characteristic in
limit contains both the second moment of the Poisson part and the dispersion of the
diffusion part, namely c = c0 + σ2.
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3. Proof of Theorem 2.1

The proof of Theorem 2.1 is based on the semimartingale representation of the impul-
sive process (4).

We split up the proof of Theorem 2.1 into following two steps.
Step 1. At this step, we establish the relative compactness of the family of processes

ξε(t), t ≥ 0, ε > 0 by using the approach developed in [7]. We recall that the space of all
probability measures defined on the standard space (E, E) is also a Polish space; so, the
relative compactness and the tightness are equivalent.

First, we need the following lemma.

Lemma 3.1. Under assumption C4, there exists a constant k > 0, independent of ε and
dependent on T , such that

E sup
t≤T

|ξε(t)|2 ≤ kT , ∀T > 0.

Corollary 3.1. Under assumption C4, the following compact containment condition
(CCC) holds:

lim
c→∞ sup

ε≤ε0
P
{

sup
t≤T

|ξε(t)| > c

}
= 0, ∀ε0 > 0, T > 0.

Proof: The proof of this corollary follows from Kolmogorov’s inequality.
Proof of Lemma 3.1: (following [7]). The impulsive process (4) has the semimartingale
representation

ξε(t) = u+Bεt +M ε
t ,(7)

where u = ξε0 ; Bεt is the predictable drift,

Bεt =
ν(t/ε2)∑
k=1

aε(ξεk−1, x
ε
k−1) = Aε1(t) +Aε(t) + θεa(t),

here

Aε1(t) := ε

ν(t/ε2)∑
k=1

a1(ξεk−1, x
ε
k−1), A

ε(t) := ε2
ν(t/ε2)∑
k=1

a(ξεk−1, x
ε
k−1),

and M ε
t is the locally square integrable martingale, where

〈M ε〉t = ε2
ν(t/ε2)∑
k=1

∫
Rd\{0}

vv∗G(ξεk−1, dv;x
ε
k−1) + θεc(t) =(8)

ε2
ν(t/ε2)∑
k=1

c(ξεk−1;x
ε
k−1) + θεc(t),

and for every finite T > 0

sup
0≤t≤T

|θε· (t)| → 0, ε→ 0.

To verify the compactness of the process ξε(t), we split up it into two parts.
The first part of the order of ε,

Aε1(t) = ε

ν(t/ε2)∑
k=1

a1(ξεk−1;x
ε
k−1),

can be characterized by the compensating operator

Lεϕ(u;x) = ε−2q(x)[Aε
1(x)P − I]ϕ(u;x),



82 V. S. KOROLIUK, N. LIMNIOS, AND I. V. SAMOILENKO

where

Aε
1(x)ϕ(u) = ϕ(u+ εa1(u;x)) = εa1(u;x)ϕ′(u) + εθεϕ(u).

After simple calculations, we can rewrite the operator:

Lε = ε−2Q + ε−1A1(x)P + θε,

where A1(x)ϕ(u) = εa1(u;x)ϕ′(u).
The corresponding martingale characterization is as follows:

μεn+1 = ϕ(Aε1,n+1, x
ε
n+1)− ϕ(Aε1,0, x

ε
0)−

νn∑
m=0

θεm+1L
εϕ(Aε1,m, x

ε
m).

Using the results from [5], Chapter 1, we obtain the last martingale in the form

μ̃εt = ϕε(Aε1(t), x
ε
t ) + ϕε(Aε1(0), xε0)−

∫ t

0

Lεϕε(Aε1(s), x
ε
s)ds,

where xεt := x(t/ε2).
Thus (see, e.g., Theorem 1.2 in [5]), it has quadratic characteristic

< μ̃ε >t=
∫ t

0

[
Lε(ϕε(Aε1(s), x

ε
t ))

2 − 2ϕε(Aε1(s), x
ε
s)L

εϕε(Aε1(s), x
ε
s)
]
ds.

Applying the operator Lε = ε−2Q+ε−1A1(x)P+θε to the test-function ϕε = ϕ+εϕ1,
we obtain the integrand of the form

Qϕ2
1 − 2ϕ1Qϕ1 + θεϕε.

Thus, the integrand is bounded. The boundedness of the quadratic characteristic
provides the compactness of μ̃εt . Thus, ϕ(Aε1(t)) is compact too and bounded uniformly
by ε. By the results from [2, Chapter 3], we obtain the compactness of Aε1(t), because
the test-function ϕ(u) belongs to the measure-determining class.

Now we should study the second part of the order of ε2.
For the process y(t), t ≥ 0, let us define the process

y†(t) = sup
s≤t

|y(s)|.

Then, from (7), we have

((ξε(t))†)2 ≤ 4[u2 + ((Aε(t))†)2 + ((M ε
t )

†)2].(9)

Now we can apply the result of Section 2.3 [5], namely
ν(t)∑
k=1

a(ξεk−1, x
ε
k−1) =

∫ t

0

a(ξε(s), xε(s))dν(s).

Condition C4 implies that, for sufficiently large ε,

(Aε(t))† = ε2
∫ t/ε2

0

a(ξε(s), xε(s))dν(s) ≤ Lε2
∫ t/ε2

0

(1 + (ξε(s))†)dν(s).(10)

Now by (8), condition C4, and Doob’s inequality (see, e.g., [8, Theorem 1.9.2]),

E((M ε
t )

†)2 ≤ 4|E〈M ε〉t|,
we obtain

(11) |〈M ε〉t| =
∣∣∣∣∣ε2

∫ t/ε2

0

∫
Rd\{0}

vv∗G(ξε(s), dv;xεs)dν(s)

∣∣∣∣∣ =∣∣∣∣∣ε2
∫ t/ε2

0

c(ξε(s);xε(s))dν(s)

∣∣∣∣∣ ≤ Lε2
∫ t/ε2

0

[1 + ((ξε(s))†)2]dν(s).
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Inequalities (9)-(11), condition (3), and Cauchy–Buniakowski–Schwarz inequality,
([
∫ t
0
ϕ(s)ds]2 ≤ t

∫ t
0
ϕ2(s)ds), imply

E((ξε(t))†)2 ≤ k1 + k2ε
2

∫ t/ε2

0

E[((ξε(s))†)2dν(s)] ≤ k1 + k2l1ε
2

∫ t/ε2

0

E((ξε(s))†)2ds =

k1 + k2l1

∫ t

0

E((ξε(s))†)2ds,

where k1, k2, and l1 are positive constants independent of ε.
By Gronwall’s inequality (see, e.g., [2, p. 498]), we obtain

E((ξε(t))†)2 ≤ k1 exp(k2l1t).

Thus, both parts of ξε(t) are compact and bounded, so

E sup
t≤T

|ξε(t)|2 ≤ kT .

Hence, the lemma is proved.

Lemma 3.2. Under assumption C4, there exists a constant k > 0 independent of ε and
such that

E|ξε(t)− ξε(s)|2 ≤ k|t− s|.
Proof: In the same manner with (9), we can write

|ξε(t)− ξε(s)|2 ≤ 2|Bεt −Bεs |2 + 2|M ε
t −M ε

s |2.
By using Doob’s inequality, we obtain

E|ξε(t)− ξε(s)|2 ≤ 2E{|Bεt −Bεs |2 + 8|〈M ε〉t − 〈M ε〉s|}.
Now (11), condition (3), and assumption C4 yield

|Bεt −Bεs |2 + 8|〈M ε〉t − 〈M ε〉s| ≤ k3[1 + ((ξε(T ))†)2]|t− s|,
where k3 is a positive constant independent of ε.

From the last inequality and Lemma 3.1, the desired conclusion emerges.
The conditions proved in Corollary 3.1 and Lemma 3.2 are necessary and sufficient

for the compactness of the family of processes ξε(t), t ≥ 0, ε > 0.
Step 2. At the next step of the proof, we apply the problem of singular perturbation

to the generator of the process ξε(t). To do this, we recall the following theorem. Let
C2

0 (Rd × E) be the space of real-valued functions twice continuously differentiable with
respect to the first argument, defined on Rd×E, and vanishing at infinity. Let C(Rd×E)
be the space of real-valued continuous bounded functions defined on Rd × E.

Theorem 3.1. ([5, Theorem 6.3]) Let the following conditions hold for a family of
Markov processes ξε(t), t ≥ 0, ε > 0:

CD1: There exists a family of test functions ϕε(u, x) in C2
0 (Rd × E), such that

lim
ε→0

ϕε(u, x) = ϕ(u),

uniformly on u, x.
CD2: The following convergence holds:

lim
ε→0

Lεϕε(u, x) = Lϕ(u),

uniformly on u, x. The family of functions Lεϕε, ε > 0, is uniformly bounded,
Lϕ(u) and Lεϕε belong to C(Rd × E).

CD3: The quadratic characteristic of the martingale that characterizes a coupled
Markov process ξε(t), xε(t), t ≥ 0, ε > 0 has the representation 〈με〉t =

∫ t
0 ζ

ε(s)ds,
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where the random functions ζε, ε > 0, satisfy the condition

sup
0≤s≤T

E|ζε(s)| ≤ c < +∞.

CD4: The convergence of the initial values holds, and

sup
ε>0

E|ζε(0)| ≤ C < +∞.
Then the weak convergence

ξε(t)⇒ ξ(t), ε→ 0,

takes place.

We consider the extended Markov renewal process

ξεn, x
ε
n, τ

ε
n, n ≥ 0,(12)

where xεn = xε(τεn), xε(t) := x(t/ε2), ξεn = ξε(τεn) and τεn+1 = τεn + ε2θεn, n ≥ 0, and

P(θεn+1 ≤ t|xεn = x) = Fx(t) = P(θx ≤ t).

Definition 3.1. [10] The compensating operator Lε of the Markov renewal process (12)
is defined by the relation

Lεϕ(ξε0 , x0, τ0) = q(x0)E[ϕ(ξε1 , x1, τ1)− ϕ(ξε0 , x0, τ0)|F0],

where
Ft := σ(ξε(s), xε(s), τε(s); 0 ≤ s ≤ t).

Using Lemma 9.1 from [5], we obtain that the compensating operator of the extended
Markov renewal process from Definition 3.1 can be defined by the relation (see also
Section 2.8 in [5])

(13) Lεϕ(u, v;x) = ε−2q(x)
[∫

E

P (x, dy)
∫

Rd

Gεu,x(dz)ϕ(u+ z, v; y)− ϕ(u, v;x)
]
.

By analogy with [5, Lemma 9.2], we can prove the following result:

Lemma 3.3. The main part in the asymptotic representation of the compensating oper-
ator (13) is

Lεϕ(u, v, x) = ε−2Qϕ(·, ·, x)+ε−1a1(u;x)Q0ϕ
′
u(u, ·, ·)+[a(u;x)−a0(u;x)]Q0ϕ

′
u(u, ·, ·)+

1
2
[c(u;x)− c0(u;x)]Q0ϕ

′′
uu(u, ·, ·) + Gu,xQ0ϕ(u, ·, ·),

where

Q0ϕ(x) := q(x)
∫
E

P (x, dy)ϕ(y),Gu,xϕ(u) :=
∫

Rd

[ϕ(u + z)− ϕ(u)]Gu,x(dz),

a0(u;x) =
∫
E

vGu,x(dv), c0(u;x) =
∫
E

vv∗Gu,x(dv).

Proof of this Lemma is analogous to the proof of [5, Lemma 9.2].
The solution of the singular perturbation problem at the test functions ϕε(u, x) =

ϕ(u) + εϕ1(u, x) + ε2ϕ2(u, x) in the form

Lεϕε = Lϕ+ θεϕ(14)

can be found in the same manner with Lemma 9.3 in [5].
To simplify the formula, we refer to the embedded Markov chain. The corresponding

generator Q̃ := P −I, and the potential operator satisfies the relation R̃0(P −I) = Π̃−I.
From (14), we obtain

Q̃ϕ = 0,
Q̃ϕ1 + A1(x)Pϕ = 0,
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Q̃ϕ2 + A1(x)Pϕ1 + (A(x) + C(x) + Gu,x)Pϕ = m(x)Lϕ,
where

A(x)ϕ(u) := [a(u;x)− a0(u;x)]ϕ′(u),A1(x)ϕ(u) := a1(u;x)ϕ′(u),

C(x) :=
1
2
[c(u;x)− c0(u;x)]ϕ′′

uu(u).

The second equation yields ϕ1 = R̃0A1(x)ϕ. Substituting it into the last equation, we
have

Q̃ϕ2 + A1(x)PR̃0A1(x)ϕ + (A(x) + C(x) + Gu,x)ϕ = m(x)Lϕ.

Since PR̃0 = R̃0 + Π̃− I, we finally obtain

q−1L = Π̃[(A(x) + C(x) + Gu,x) + A1(x)R̃0A1(x) −A2
1(x)]Π̃.(15)

Simple calculations give us (6) from (15).
Now Theorem 3.1 can be applied.
We see from (13) and (15) that the solution of the singular perturbation problem for

Lεϕε(u, v;x) satisfies conditions CD1, CD2. Condition CD3 of this theorem implies
that the quadratic characteristic of the martingale corresponding to a coupled Markov
process is relatively compact. The same result follows from the CCC (see Corollary 3.1
and Lemma 3.2) by [4, Chapter 9]. Thus, condition CD3 follows from Corollary 3.1
and Lemma 3.2. Due to L1, condition CD4 is also satisfied. Thus, all the conditions of
Theorem 3.1 are satisfied, so the weak convergence ξε(t)⇒ ξ0(t) takes place.

Theorem 2.1 is proved.
The authors thank anonymous referees for the attention to the article and useful

comments that allowed them to improve the presentation of results.
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