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YU. E. GLIKLIKH

STOCHASTIC DYNAMICS VIA EQUATIONS AND INCLUSIONS IN
TERMS OF MEAN DERIVATIVES AND INFINITESIMAL

GENERATORS

This is a survey of recent results on stochastic differential equations and inclusions
given in terms of mean derivatives and infinitesimal generators of stochastic processes.
We pay the main attention to equations and inclusions on manifolds.

The notion of mean derivatives was introduced by Edward Nelson in [20, 21, 22] for the
needs of stochastic mechanics (a version of quantum mechanics). The equation of motion
in this theory (called the Newton–Nelson equation) was the first example of equations in
mean derivatives. Later on, it turned out that the equations in mean derivatives arose
also in the description of motion of a viscous incompressible fluid, mechanical systems
with random perturbations, Navier–Stokes vortices, etc. (see, e.g., [13, 14, 15] and [18]).

In all above-mentioned cases, the solutions of the equations were supposed to be Itô
diffusion type processes (or even Markov diffusion processes), whose diffusion summand
was given a priori since the classical Nelson’s mean derivatives yield, roughly speaking,
only the drift term (forward, backward, etc.) of a stochastic process. In [1], as a slight
modification of some Nelson’s idea, the mean derivative of a new sort, called a quadratic
one, was introduced so that it became possible, in principle, to recover a process from
its mean derivatives.

This paper contains an introduction into this theory and a survey of results obtained
on first-order equations and inclusions starting from paper [1], with focus on systems on
manifolds (see [1, 2, 3, 16, 17]). In particular, we discuss the relations between mean
derivatives and infinitesimal generators.

For results related to the second-order case, we refer the reader to [13, 14, 15, 5, 6],
where, in particular, the list of mean derivatives for processes from a broad class can be
found, as well as explicit examples of second-order equations and inclusions with mean
derivatives arising in mathematical physics.

Preliminaries from the geometry of manifolds can be found in [15], from the gen-
eral theory of stochastic differential equations on manifolds in [10] and from set-valued
analysis in [8].

Some remarks on notations. The space of n×n matrices is denoted by L(Rn,Rn). By
S(n), we denote the linear space of symmetric n×nmatrices, i.e., a subspace in L(Rn,Rn).
The symbol S+(n) denotes the set of positive definite symmetric n×n matrices that is a
convex open set in S(n). Its closure, i.e., the set of positive semidefinite symmetric n×n
matrices, is denoted by S̄+(n).

Everywhere below for a set B in Rn or in L(Rn,Rn), we use the norm introduced by
the usual formula ‖B‖ = supy∈B ‖y‖.

In spite of the fact that we do not use the concept of strong solution, we say by
analogy with the theory of stochastic differential equations that an equation (inclusion)
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has a weak solution, if there exists a probability space and a process given on that space,
for which the equation (inclusion) is satisfied.

1. Mean Derivatives

Consider a stochastic process ξ(t) in Rn, t ∈ [0, T ] given on a certain probability space
(Ω,F ,P) and such that ξ(t) is an L1 random element for all t. It is known that such a
process determines 3 families of σ-subalgebras of the σ-algebra F :

(i) ”the past” Pξt generated by preimages of Borel sets from Rn under all mappings
ξ(s) : Ω → Rn for 0 ≤ s ≤ t;

(ii) ”the future” Fξt generated by preimages of Borel sets from Rn under all mappings
ξ(s) : Ω → Rn for t ≤ s ≤ T ;

(iii) ”the present” (”now”) N ξ
t generated by preimages of Borel sets from Rn under

the mapping ξ(t) : Ω → Rn.
All the above families are supposed to be complete, i.e., containing all sets of proba-

bility zero. Analogous notions are used for processes on manifolds as well.
For the sake of convenience, we denote, by Eξt , the conditional expectation E(·|N ξ

t )
with respect to the ”present” N ξ

t for ξ(t).
According to Nelson’s ideas, we introduce the following notions of forward and back-

ward mean derivatives:

Definition 1.1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time instant t is
an L1 random element of the form

(1) Dξ(t) = lim
�t→+0

Eξt (
ξ(t+�t)− ξ(t)

�t ),

where the limit is supposed to exist in L1(Ω,F ,P), and �t → +0 means that �t tends
to 0 and �t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random element

(2) D∗ξ(t) = lim
Δt→+0

Eξt (
ξ(t)− ξ(t−Δt)

Δt
),

where (as well as in (i)) the limit is assumed to exist in L1(Ω,F ,P), and Δt→ +0 means
that Δt→ 0 and Δt > 0.

Remark 1.1. If ξ(t) is a Markov process, then Eξt can be evidently replaced by E(·|Pξt )
in (1) and by E(·|Fξt ) in (2). In initial Nelson’s works, there were two versions of the
definition of mean derivatives: as in our Definition 1.1 and with conditional expectations
with respect to ”past” and ”future” that coincide for Markov processes. Here, we deal
with mean derivatives with respect to ”present” taking the physical principle of locality
into account: the derivative should be determined by the present state of the system,
not by its past or future. An alternative theory of equations and inclusions with mean
derivatives relative to the “past” filtration (called P-mean derivatives) is discussed in [3].

Rather often, the following generalizations of the notions of forward and backward
mean derivatives arise. The forward mean derivative Dξη(t) and the backward derivative
of Dξ

∗η(t) of η(t) with respect to ξ(t) at the time instant t are L1 random elements of
the form

Dξη(t) = lim
�t→+0

Eξt (
η(t+�t)−η(t)

�t ) and Dξ
∗η(t) = lim

Δt→+0
Eξt (

η(t)−η(t−Δt)
Δt ),

where the limits are supposed to exist in L1(Ω,F ,P), and �t→ +0 means that �t tends
to 0 and �t > 0.
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Introduce a differential operator D2 that differentiates an L1 random process ξ(t),
t ∈ [0, T ] according to the rule

D2ξ(t) = lim
�t→+0

Eξt (
(ξ(t+�t)− ξ(t))⊗ (ξ(t+�t)− ξ(t))

�t ).

It can be also described as

D2ξ(t) = lim
�t→+0

Eξt (
(ξ(t +�t)− ξ(t))(ξ(t +�t)− ξ(t))∗

�t ),

where (ξ(t+�t)−ξ(t)) is considered as a column vector (vector in Rn), (ξ(t+�t)−ξ(t))∗
is a row vector (transposed or conjugate vector), and the limit is supposed to exists in
L1(Ω,F ,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix so that D2ξ(t) is a symmetric semipositive definite matrix function
on [0, T ]× Rn.

Definition 1.2. D2 is called quadratic mean derivative.

Remark 1.2. From the properties of a conditional expectation, it follows that there exist
Borel mappings a(t, x), a∗(t, x) and α(t, x) from R × Rn to Rn and to S̄+, respectively,
such that Dξ(t) = a(t, ξ(t)), D∗ξ(t) = a∗(t, ξ(t)) and D2ξ(t) = α(t, ξ(t)). We call a(t, x),
a∗(t, x) and α(t, x) the regressions.

Recall that the Itô process is a process of the form ξ(t) = ξ0 +
t∫
0

a(s)ds+
t∫
0

A(s)dw(s).

Definition 1.3. An Itô process ξ(t) is called a process of the diffusion type if a(t) and
A(t) are not anticipating with respect to Pξt , and the Wiener process w(t) is adapted
to Pξt . If a(t) = a(t, ξ(t)) and A(t) = A(t, ξ(t)), where a(t, x) and A(t, x) are Borel
measurable mappings from [0, T ] × Rn to Rn and to L(Rn,Rn), respectively, the Itô
process is called a diffusion process.

In view of the properties of conditional expectation and the fact that N ξ
t is a σ-

subalgebra in Pξt , it is clear that, for any martingale η(t) with respect to Pξt , the equality
Dξη(t) = 0 holds. Since, for a diffusion-type process, the integral

∫ t
0
A(s)dw(s) is a

martingale with respect to Pξt , the following statement takes place:

Theorem 1.1. For an Itô diffusion type process ξ(t), the mean derivative Dξ(t) exists
and equals Eξt (a(t)). In particular, if ξ(t) is a diffusion process, Dξ(t) = a(t, ξ(t)).

Theorem 1.2. Let ξ(t) be a diffusion type process. Then D2ξ(t) = Eξt [α(t)], where
α(t) = A(t)A∗(t) is the diffusion coefficient. In particular, if ξ(t) is a diffusion process,
D2ξ(t) = α(t, ξ(t)), where α(t, x) = A(t, x)A∗(t, x) is the diffusion coefficient.

Theorem 1.3. D2ξ(t) = 0 if and only if A = 0, and so ξ(t) is a deterministic process.

Definition 1.4. The derivativeDS = 1
2 (D+D∗) is called the symmetric mean derivative.

The derivative DA = 1
2 (D −D∗) is called the antisymmetric mean derivative.

Consider the vectors vξ(t, x) = 1
2 (a(t, x)+a∗(t, x)) and uξ(t, x) = 1

2 (a(t, x)−a∗(t, x)).
Definition 1.5. The quantity vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called the current velocity
of the process ξ(t); and uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called the osmotic velocity of the
process ξ(t).

The physical meaning of vξ and uξ is as follows. Let ξ(t) describe the motion of
a physical process, say the motion of a particle (we are sure that all physical motions
are random with a very small dispersion, so that it usually looks natural to omit the
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randomness from consideration). Then the current velocity vξ is what we usually consider
as the ordinary physical velocity while the osmotic velocity uξ shows how fast the particle
”diffuses” into the enveloping continuum, i.e., how fast the ”randomness” is changing.
This interpretation has the following mathematical motivation discovered by Nelson.

Consider an autonomous smooth field of non-degenerate linear operators A(x) : Rn →
Rn, x ∈ Rn. Suppose that ξ(t) is a diffusion-type process, whose diffusion integrand is
A(ξ(t)). Then its diffusion coefficient A(x)A∗(x) is a smooth field of symmetric positive
definite matrices α(x) = (αij(x)). Since all those matrices are non-degenerate, the
field of inverse matrices (αij) exists and is smooth. Moreover, at any x, the matrix
(αij)(x) is symmetric and positive definite. Thus, it defines a new Riemannian metric
α(·, ·) = αijdx

idxj on Rn. Consider the Riemannian volume form of this Riemannian
metric Λα =

√
det(αij)dx1 ∧ dx2 ∧ · · · ∧ dxn.

Denote, by ρξ(t, x), the probability density of ξ(t) with respect to the volume form
dt ∧ Λα =

√
det(αij)dt ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn on [0, T ] × Rn. In other words, for any

continuous bounded function f : [0, T ]× Rn → R. the relation
T∫

0

E(f(t, ξ(t)))dt =

T∫
0

(
∫
Ω

f(t, ξ(t))dP)dt =
∫

[0,T ]×Rn

f(t, x)ρξ(t, x)dt ∧ Λα

holds. Then
uξ(t, x) =

1
2
Grad log ρξ(t, x) = Grad log

√
ρξ(t, x),

where Grad denotes the gradient with respect to the Riemannian metric α(·, ·). For
vξ(t, x) and ρξ(t, x), the so-called equation of continuity

∂ρξ(t, x)
∂t

= −Div(vξ(t, x)ρξ(t, x))
holds, where Div denotes the divergence with respect to the Riemannian metric α(·, ·).

Let Y (t,m), t ∈ [0, l], be a smooth time-dependent vector field on Rn. We define the
forward derivative DY and the backward derivative D∗Y of Y along ξ(t) as follows:

DY (t, ξ(t)) = lim
Δt→+0

Eξt
Y (t+ Δt, ξ(t+ Δt))− Y (t, ξ(t))

Δt
,

D∗Y (t, ξ(t)) = lim
Δt→+0

Eξt
Y (t, ξ(t)) − Y (t−Δt, ξ(t−Δt))

Δt
.

Suppose that the process ξ has the diffusion coefficient σ2

2 I. Then we obtain that

DY =
(
σ2

2
Δ +X · ∇+

∂

∂t

)
Y and D∗Y =

(
−σ

2

2
Δ +X∗ · ∇+

∂

∂t

)
Y,

where Δ is the Laplace operator, ∇ =
(
∂/∂q1, . . . , ∂/∂qn

)
, and the dot denotes the inner

product in Rn.

2. Mean Derivatives on Manifolds

Let M be a finite-dimensional smooth manifold. Specify a certain connection on M .
Consider an M -valued stochastic process ξ(t). Let m be a point of the manifold M .
Consider the normal chart Um at this point m with respect to the above connection. For
any m′ from this chart, we can compute the regression

Y 0(t,m′)|Um = lim
�t→0

E((
ξ(t +�t)− ξ(t)

�t )Um |ξ(t) = m′).

Construct a vector field Y 0(t, ·) such that, at every point m ∈M, it is equal to

Y 0(t,m)|Um
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computed in the normal chart Um. Thus, we have that Y 0 is a measurable section of the
tangent bundle TM .

Definition 2.1. Dξ(t) = Y 0(t, ξ(t)) is called the mean forward derivative of a process
ξ(t) on M at the time instant t.

The mean backward derivative is defined analogously, and it depends on the choice of
connection as well.

Introduce also another derivative for the stochastic process ξ(t) on M . Take any chart
U and, in it, consider the L1 random variable determined by the rule

(3) D2ξ(t) = lim
�t→+0

Eξt (
(ξ(t+�t)− ξ(t))⊗ (ξ(t+�t)− ξ(t))

�t ).

Definition 2.2. D2ξ(t) is called the quadratic mean derivative of the process ξ(t) on M
at the time instant t.

Notice that the forward and backward derivatives depend on the choice of the con-
nection while the quadratic mean derivative does not. It takes values in (2, 0)-tensors.

Let A(t,m) be a field of linear maps from a certain Euclidean space Rk to tangent
spaces TmM . We recall that the Itô equation on a manifold is a section of the fiber
bundle that we call the Itô bundle. Over any chart Uα in a manifold M, it has the form
of a direct product Uα× (Rn ×L(Rk,Rn)). Under a transition to another chart Uβ with
a change of the coordinates ϕβα, the point (mα, (aα, Aα)) is transformed by the rule

(mα, (aα, Aα)) �→ (ϕβαmα, (ϕ′
βαa

α +
1
2
tr ϕ′′

βα(Aα, Aα), ϕ′
βαA

α)).

We denote Itô equations as couples (â, A). For such a couple, the stochastic differential
equation defined in charts by the relation

(4) dξ(t) = â(t, ξ(t))dt +A(t, ξ(t))dw(t),

where w(t) is a Wiener process in Rk, is well-posed on the entire M .
The couple (a,A), where a is a vector field on M, and A is as above, is called the Itô

vector field.

Definition 2.3. An Itô equation (â, A) and the Itô vector field (a,A) such that, in any
chart â(t,m) = a(t,m) − 1

2 trΓm(A(t,m), A(t,m)), where Γ(·, ·) is a local coefficient of
the connection H, are said to be canonically corresponding to each other with respect to
the connection H.

There are the descriptions of solutions of (4) by means of Itô vector fields, known as
Itô equations in the Belopol’skaya–Daletskii form and in the Baxendale form (see, e.g.,
[7]). The former is given globally on a manifold (exponential map of the connection is
involved into construction) and the latter is given in charts and plays the role of a local
description of the former. For the sake of simplicity, we use the description in charts: a
solution of (4) in a chart satisfies the equation

dξ(t) = a(t, ξ(t))dt − 1
2
trΓξ(t)(A(t, ξ(t), ξ(t))dt +A(t, ξ(t))dw(t),

where (a,A) canonically corresponds to (â, A) with respect to the connection H.

Theorem 2.1. Specify any connection H. Let (a,A) be the Itô vector field canonically
corresponding to the Itô equation (â, A) with respect to H, and the forward mean deriv-
ative D is defined also with respect to normal charts of H. Then, for a solution ξ(t) of
(4), the equality Dξ(t) = a(t, ξ(t)) holds.
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Thus, changing a connection, we change both the canonically corresponding Itô vector
field and the forward mean derivative, but anyhow Dξ(t) = a(t, ξ(t)). On the one hand,
this means that the Itô equation (4) has invariant sense, rather than its presentation in
the Belopol’skaya–Daletskii or Baxendale form. On the other hand, we can try to choose
”the best” connection and use it both for the canonical correspondence and the mean
derivative.

Theorem 2.2. For a solution ξ(t) of (4), the relation D2ξ = AA∗ holds.

As above, if A is smooth, autonomous, and non-degenerate, then AA∗ generates a Rie-
mannian metric on M . Its Levi-Civita connection looks most convenient for applications.
In this section, we use this connection.

It follows from Nelsons’s results that the current velocity of a process is a vector and
can be determined without the use of connections.

The second-order tangent vector A is a second-order differential operator of the form
A = bi ∂

∂qi + βij ∂2

∂qj∂qj , where the matrix (βij) is symmetric since ∂2f
∂qj∂qj = ∂2f

∂qj∂qi for
a smooth real-valued f . The space of second-order tangent vectors at m ∈ M is called
the second-order tangent space and denoted by τmM . The second-order tangent bundle
is denoted by τM . Thus, ∂

∂xi and ∂2

∂xi∂xj , i, j = 1, 2, . . . , n form a basis in τmM . A
detailed description of the theory of second-order tangent vectors and differential forms
on manifolds is contained in [11, 19, 23]

At every m ∈ M, there is a canonical isomorphism between the space TmM � TmM
(where � denotes the symmetric tensor product) and the quotient space τmM/TmM ,
and so between TM � TM and τM/TM . Taking the above factorization into account,
we construct the morphism Q : τM → TM � TM , i.e., the field of linear projectors
Qm : τmM → TmM � TmM such that

(5) QB(t,m) = Q(bi
∂

∂qi
+ βij

∂2

∂qi∂qj
) = βij

∂

∂qi
⊗ ∂

∂qj
.

Every connection H on M determines a linear operator from τmM to TmM at any
point m ∈M as follows:

(6) H(bk
∂

∂qk
+ βij

∂2

∂qj∂qj
) = (bk + Γkijβ

ij)
∂

∂qk
,

where Γkij are the Christoffel symbols of connection H (see [11, 19, 23]). Thus, the
connections and only they are smooth cross-sections of Hom(τM, TM), the bundle of
fiber-wise linear operators from τM to TM .

Let (â, A) be an Itô equation. The example of a second-order tangent vector is its
infinitesimal generator L = âk ∂

∂qk + 1
2α

ij ∂2

∂qi∂qj , where (αij) is the matrix of AA∗. We
emphasize that both (â, A) and its generator are invariant objects that are not related
to connections.

Theorem 2.3 (see [2, 17]). Let ξ(t) be a solution of (â, A). Then (i) D2ξ(t) = 2QL(ξ(t)),
(ii) Dξ(t) = HL(ξ(t)). (iii) If L∗ is the backward generator, then D∗ξ(t) = HL∗(ξ(t)).

3. Differential Equations with Mean Derivatives

Everywhere below for the sake of simplicity, we consider equations, their solutions,
etc., on a finite time interval, t ∈ [0, T ].

Let Borel measurable maps a(t, x) and α(t, x) from [0, T ]× Rn to Rn and to S̄+(n),
respectively, be given.

Consider the system

(7)
{
Dξ(t) = a(t, ξ(t)),
D2ξ(t) = α(t, ξ(t)),
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We call it the first-order differential equation with forward mean derivatives.
With regard for Remark 1.2, Theorem 1.1, and Theorem 1.2, we mainly look for weak

solutions of (7) in the class of diffusion-type processes, since the first equation of (7)
determines a drift, and, by the second one, we can try to determine the diffusion term of
an Itô diffusion-type equation. To do this, we use the following two technical statements:

Lemma 3.1. Let α(t, x) be a jointly continuous (measurable, smooth) mapping from
[0, T ]×Rn to S+(n). Then there exists a jointly continuous (measurable, smooth, respec-
tively) mapping A(t, x) from [0, T ]× Rn to L(Rn,Rn) such that, for all t ∈ R, x ∈ Rn,
the equality A(t, x)A∗(t, x) = α(t, x) holds.

To prove Lemma 3.1, we use the so-called Gauss decomposition of symmetric non-
degenerate matrices (see details in [1]). If α(t, x) is degenerate, the corresponding A
exists as well. But it is not unique, and there is a problem to prove that it is continuous,
smooth, measurable, etc. In this case, applying results of [12], it is possible to obtain a
continuous A(t, x) by another construction:

Lemma 3.2. If α(t, x) is a C2-smooth map from [0, T ] × Rn to S̄+(n), there exists a
jointly continuous map A(t, x) from [0, T ] × Rn to L(Rn,Rn) such that, for all t ∈ R,
x ∈ Rn, the equality A(t, x)A∗(t, x) = α(t, x) holds.

Theorem 3.1. Let α(t, x) in (7) be jointly continuous, positive definite (i.e., for all
t ∈ [0, T ], x ∈ Rn, it belongs to S+(n)) and satisfy the estimate

(8) ‖tr α(t, x)‖ < K(1 + ‖x‖)2
for a certain K > 0. Let a(t, x) be Borel measurable and satisfy the estimate

(9) ‖a(t, x)‖ < K(1 + ‖x‖)
for a certain K > 0. Then, for any initial condition ξ(0) = x0 ∈ Rn, Eq. (7) has a weak
solution well-posed on the entire interval [0, T ].

Theorem 3.2. Let α(t, x) be C2-smooth semipositive definite (i.e., for all t ∈ [0, T ],
x ∈ Rn, it belongs to S̄+(n)) and satisfy (8). Let a(t, x) be continuous and satisfy (9).
Then, for any initial condition ξ(0) = x0 ∈ Rn, Eq. (7) has a weak solution that is
well-posed on the entire interval [0, T ].

As is mentioned in Section 1, the meaning of current velocities is analogous to that
of the ordinary velocity for a non-random process. Thus, the case of equations and
inclusions with current velocities is probably the most natural from the physical point of
view.

The system

(10)
{
DSξ(t) = v(t, ξ(t))
D2ξ(t) = α(t, ξ(t))

is called a first-order differential equation with current velocities.

Theorem 3.3. Let v : [0, T ]× Rn → Rn be smooth, and let α : Rn → S+(n) be smooth
and autonomous (so, it determines the Riemannian metric α(·, ·) on Rn introduced in
Section 1). Let also they satisfy the estimates

‖v(t, x)‖ < K(1 + ‖x‖),
tr α(x) < K(1 + ‖x‖2)

for some K > 0. Let ξ0 be a random element with values in Rn, whose probability
density ρ0 with respect to the volume form Λα of α(·, ·) on Rn (see Section 1) is smooth
and nowhere equal to zero. Then, for the initial condition ξ(0) = ξ0, Eq. (10) has a weak
solution that is well-posed on the entire interval, t ∈ [0, T ].
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Lemma 3.3. Let α(x), ρ(t, x) and Λα be the same as in Theorem 3.3. Let also the vector
field v from Theorem 3.3 be autonomous. Then the flow ĝt of the vector field (1, v(x)) on
[0, T ]×Rn preserves the volume form ρ(t, x)dt∧Λα (i.e., ĝ∗t (ρ(t, x)dt∧Λα) = ρ0(x)dt∧Λα,
where ĝ∗t is the pull back) and so, for any measurable set Q ⊂ Rn and for any t ∈ [0, T ],∫

Q

ρ0(x)Λα =
∫

gt(Q)

ρ(t, x)Λα.

4. Differential Inclusions with Forward Mean Derivatives and

Infinitesimal Generators

Stochastic differential inclusions naturally arise in many problems. Stochastic equa-
tions turn into inclusions by the same reasons as ordinary ones (see details, e.g., in [8]).
For example, if the coefficients of an equation are (even) not measurable (say, the equation
describes the motion in complicated stochastic media, or dry friction is present), there
exists a method of passing from the equation to some inclusion. For ordinary equations,
this approach was suggested by A. Filippov. In stochastic case, it was first considered
by Conway [9] in 1971. Another well-known sort of inclusions describes the systems with
feedback control. In this case, one considers the right-hand side of the equation for all
values of a controlling parameter and so obtains the set-valued right-hand side.

Among stochastic differential inclusions, those with mean derivatives are ideologically
the closest to ordinary differential inclusions, since they are formulated in the differen-
tial form, not in terms of stochastic integrals of measurable selectors as in the classical
approach. Many explicit inclusions arisen in mathematical physics are second-order ones
(see, e.g., [13, 14, 15, 5, 6]) that we do not consider here. But below, we describe some
possible economic meaning of first-order inclusions with mean derivatives.

Let a(t, x) and α(t, x) be set-valued mappings from [0, T ]× Rn to Rn and to S̄+(n),
respectively. The system of the form

(11)
{
Dξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t))

is called a first-order differential inclusion with forward mean derivatives.
Besides the physical meaning (motion in a complicated medium or under feedback

control, see above), (11) may have economic interpretation if a(t, x) and α(t, x) are
obtained from estimates of the expected growth rate of profits and the covariation matrix,
respectively, predicted by experts for the vector x of assets of a portfolio at a time instant
t. Then the solution of (11) is a portfolio that satisfies the experts’ predictions. An
explicit inclusion of this sort with economic meaning is presented in [4].

Theorem 4.1. Suppose that a(t, x) is a uniformly bounded, Borel measurable set-valued
mapping from [0, T ]× Rn to Rn with closed values. Let α(t, x) be a uniformly bounded,
Borel measurable set-valued mapping from [0, T ]× Rn to S+(n) with closed values, and
let there exist ε0 > 0 such that, for all t, x, the ε0-neighborhood of α(t, x) in S(n) does
not intersect the set S0(n) of symmetric degenerate n× n matrices.

Then, for any initial condition ξ(0) = ξ0 ∈ Rn, inclusion (11) has a weak solution
that is well-posed on the entire interval, t ∈ [0, T ].

Theorem 4.1 is proved by the application of Lemma 3.1 and Krylov’s theorem on the
existence of weak solutions for stochastic differential equations with measurable coeffi-
cients.

Theorem 4.2. Let a(t, x) be an upper semicontinuous set-valued mapping with closed
convex values from [0, T ]× Rn to Rn, and let it satisfy the estimate

‖a(t, x)‖2 < K(1 + ‖x‖2)
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for some K > 0.
Let α(t, x) be an upper semicontinuous set-valued mapping with closed convex values

from [0, T ]× Rn to S̄+(n) such that, for each α(t, x) ∈ α(t, x), the estimate

‖tr α(t, x)‖ < K(1 + ‖x‖2)
takes place for some K > 0.

Then, for any initial condition ξ(0) = ξ0 ∈ Rn, inclusion (11) has a weak solution
that is well-posed on the entire interval, t ∈ [0, T ].

Here, we consider the systems of continuous εi-approximations (εi → +0) for α(t, x)
and, for a(t, x) that piecewise converge to Borel selections, show that the measures cor-
responding to the solutions of equations with those selections as coefficients, are weakly
compact, take a limit measure, and show that this measure corresponds to a solution to
the equation with limit selections as coefficients.

Theorem 4.3. Suppose that α(t, x) takes values in the space S̄+(n) of positive semi-
definite symmetric matrices, has closed convex images, and is lower semicontinuous. We
also assume that, for each α ∈ α(t, x), the following estimate

‖tr α(t, x)‖ < K(1 + ‖x‖)2

holds for some K > 0. Let also a(t, x) be Borel measurable set-valued mapping and
satisfy the estimate

‖a(t, x)‖ < K(1 + ‖x‖)
for some K > 0. Then, for any initial condition ξ(0) = ξ0, there exists a weak solution
of (11) that is well-posed on the entire interval, t ∈ [0, T ].

Analogous statements take place for the inclusions with P-mean derivatives [3].
Now consider inclusions in mean derivatives on manifolds. Let a(t,m) be a set-valued

vector field on a manifold M , i.e., for every point m ∈M, a certain set a(t,m) ⊂ TmM is
specified. Let also α(t,m) be a set-valued symmetric positive semidefinite (2, 0)-tensor
field on M (this means that, for all t, m, any tensor from the set α(t,m) is symmetric
and positive semidefinite). Consider the problem

(12)
{
Dξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t)).

We recall that a function M → R is called proper if the preimage of every compact
set in R is compact in M .

By Aa,α(t,m), we denote the set-valued second-order vector field with images

Aa,α(t,m) = {Aa,α(t,m) | HAa,α(t,m) = a(t,m),

QAa,α(t,m) = α(t,m) for a ∈ a(t,m), α ∈ α(t,m)},
where the mappings Q and H are introduced by formulae (5) and (6), respectively.

Theorem 4.4. Let α(t,m) and a(t,m) be upper semicontinuous set-valued symmetric
positive semidefinite (2, 0)-tensor field and vector field on M , respectively, with closed
convex images. In addition, let, for every compact set K ⊂ M, the sets a([0, T ],K) and
α([0, T ],K) are compact, and let there exist a proper function ϕ : M → R such that,
at every (t,m), the generator Aa,α from a certain neighborhood V of the the graph of
Aa,α(t,m), satisfies the condition |Aϕ| < C for some constant C > 0. Then, for any
initial condition ξ(0) = m0, there exists a weak solution of (12) well-posed on the entire
interval [0, T ].
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For a process ξ(t) with values in a manifold M (in particular, in Rn), we introduce
the generator as a field of second-order semielliptic differential operators acting on the
smooth enough function f according to the rule

(13) A(t,m)f = lim
Δt→+0

E
(f(ξ((t+ Δt)) ∧ θm)− f(ξ(t ∧ θm))

Δt
| ξ(t) = m

)
,

where θm is the Markov time of the first hit of ξ to the boundary of a certain chart
containing m. The difference between (13) and the ordinary definition of a generator is
that here we use the conditional expectation instead of the unconditional one. Note that
if ξ(t) is Markovian, both (13) and the ordinary definition introduce the same object.
Obviously, the generator defined by (13) is a second-order tangent vector.

Let a field of set-valued second-order tangent vectors A(t,m) be given, i.e., in every
second-order tangent space τmM to the manifold M, there is a certain set A(t,m) de-
pending on t ∈ [0,∞). We want to find a stochastic process ξ(·) such that, for every t,
its generator L(t,m) introduced in (13), a.s. satisfies the inclusion

(14) L(t, ξ(t)) ∈ A(t, ξ(t)).

Problems of this sort naturally arise if the process is described in terms of its generator.

Theorem 4.5. Let A(t,m), t ∈ [0, T ], be an upper semicontinuous set-valued second-
order vector field on a manifold M with closed convex values such that: (i) for every
t ∈ [0, T ], m ∈M for each A ∈ A(t,m), the (2, 0)-tensor QmA is symmetric and positive
semidefinite; (ii) for every compact set K ∈ M, the set A([0, T ],K) is compact in τM ;
(iii) there exist a proper function ψ : M → R, a constant C > 0, and a neighborhood
V of the graph of A in [0, T ] × τ(M) such that, for every (t,m,A) ∈ V , the inequality
|Aψ| < C holds.

Then, for every m0 ∈ M, there exists a certain probability space and a stochastic
process ξ(t) with initial condition ξ(0) = m0, well-posed for all t ∈ [0, T ], given on
that probability space and taking values in M , such that, for its infinitesimal generator,
inclusion (14) is a.s. satisfied.

In [2], a certain existence theorem for (14) in Rn is obtained under some conditions
of another sort.
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matics, 851 (1981), 256-270.
20. E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev., 150

(1966), no. 4, 1079-1085.
21. E. Nelson, Dynamical Theory of Brownian Motion, Princeton Univ. Press, Princeton, 1967.
22. E. Nelson, Quantum Fluctuations, Princeton Univ. Press, Princeton, 1985.
23. L. Schwartz, Semimartingales and Their Stochastic Calculus on Manifolds, Montreal University

Press, Montreal, 1984.

Voronezh State University, 1, Universitetskaya Sq., Voronezh 394006, Russia

E-mail address: yeg@math.vsu.ru


