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E. V. BULINSKAYA

CATALYTIC BRANCHING RANDOM WALK ON
THREE-DIMENSIONAL LATTICE

We consider a critical catalytic continuous time branching random walk on the integer
lattice under the assumption that the birth and the death of particles occur at a single
source of branching located at the origin. For the introduced joint generating function
of the number of particles, the differential and integral equations are obtained in case
of �d with arbitrary d ∈ �. The limit value of the population survival probability
as t → ∞ is found as a function of the starting point x ∈ �

3. We establish the
asymptotic behavior of the probability that the number of particles at the origin at
time t is positive. The Yaglom-type conditional limit theorem for the number of
particles at the origin is proved. A joint conditional limit distribution of the number
of particles at the source and the number of particles outside of it with finite lifetime
is studied as well.

1. Introduction

The models described in terms of both the walking and the branching of particles
on integer lattices of various dimensions were recently applied in statistical physics and
chemistry (see, e.g., [1] and [2]). A type of model depends on certain parameters including
the lattice dimension and the number of the sources of birth and death located at lattice
points. It is interesting to note that nontrivial effects appear even in the models with a
single source of branching (see [3] – [15]). Therefore, we focus on this case permitting to
investigate how the lattice dimension influences the asymptotic properties of the system
of particles.

An essential role in the following analysis belongs to a continuous time symmetric
branching random walk (SBRW) on Zd, d ∈ N. Such a model goes back at least to [3].
The characteristic features of the model are a symmetry and a spatial homogeneity of
the random walk transition intensities a(u, υ), u, υ ∈ Zd. The former is equivalent to the
self-adjointness of the corresponding infinitesimal transition matrix A = (a(u, υ))u, υ∈Zd .
According to [4] – [9], the asymptotic behavior of the total number of particles and
that of the number of particles at the source are determined by the value of parameter
β = f ′(1), where f(x), x ∈ [0, 1], is the infinitesimal generating function governing the
branching mechanism at a point of the birth and the death of particles. Note that the
critical value βc depends mainly on the dimension of the lattice. In particular, under the
condition β ≥ βc, the exponential growth of both the total number and the local number
of particles occurs. The detailed analysis of the model is developed in monograph [10].

Another model, called a catalytic branching random walk (CBRW), of critical con-
tinuous time branching random walk on Zd, d ∈ N, with a single source was proposed
for d = 1 in [11]. It differs from SBRW by the parameter α controlling the relation of
the branching and the walk at the source. The introduction of the parameter α causes
an asymmetry of the random walk generator Ā. This entails new difficulties for the
investigation of the model. Papers [12, 13] for d = 1 and [14] for d = 2 are devoted to
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the study of CBRW by methods of branching processes. A reformulation of the model
description in terms of infinitesimal characteristics was performed in [15]. In this way,
the necessary and sufficient conditions of the criticality of CBRW on Zd, d ∈ N, were
obtained by the methods of differential equations in the Banach spaces and the spectral
theory of operators.

The aim of the present paper is to study critical CBRW on a three-dimensional lattice.
Seemingly, there are no publications concerning this subject, though such an investigation
is of undoubtful interest. As was shown in [10] (p. 34), a random walk with generator
Ā on Zd, d ∈ N, is transient for d ≥ 3 and is recurrent for d = 1 or d = 2. So it is
natural to expect new effects in asymptotic properties of CBRW on a three-dimensional
lattice which were not observed in the case of lattices of lower dimensions. Indeed, the
survival probability of a population of particles on Z3 has a nonzero limit (as time tends
to infinity) in contrast to the case of Z or Z2. It is explained by the existence (with
nonzero probability) of particles which never reach the source. Rather surprisingly, the
asymptotics of the probability of nondegeneracy at the origin for the models of CBRW
coincide up to a constant factor on Z and Z3 (differing, however, from that in the Z2 case).
Moreover, the corresponding Yaglom-type conditional limit theorems for the generating
functions of the number of particles at the source have the same form for d = 1 and d = 3.
Basically, this is due to the coincidence, up to a constant factor, of the asymptotics of the
first local moments for the CBRW on Z and Z3. It is worth mentioning that we have to
consider separately the particles with finite and infinite lifetimes to prove the conditional
limit theorem like the second part of Theorem 1 in [11]. One can demonstrate the above-
mentioned properties of CBRW on the lattices of different dimensions using the results
of [11, 12, 14] and the theorems below. Furthermore, the new differential and integral
equations for the introduced joint generating functions of the numbers of particles for
the CBRW model on Zd, d ∈ N, will be derived while proving these theorems. Some
useful auxiliary statements will be provided as well.

Before formulating the main results, we describe the model of CRBW on Z3 and
introduce some necessary notation.

The population of particles is initiated at the time t = 0 by a parent particle located
at a point x ∈ Z3. If x 
= 0, then the particle performs a continuous time random walk
until it gets to the origin. The random walk outside the origin is specified by an infin-
itesimal transition matrix A = (a(u, υ))u∈Z3\{0}, υ∈Z3 and is assumed to be symmetric,
homogeneous, irreducible, and having zero mean and a finite variance of jumps, that is,

a(u, υ) = a(υ, u), a(u, υ) = a(0, υ − u)
def
= a(υ − u) with a(υ) ≥ 0, υ 
= 0, a(0) < 0,∑

υ∈Z3

a(υ) = 0 and
∑
υ∈Z3

‖υ‖2a(υ) <∞.

If x = 0 or if a particle hits the origin, it spends an exponentially distributed time with
parameter 1 at the source of branching. Then the particle either dies with the probability
α, having produced just before the death a random number of offsprings ξ, or leaves the
source of branching with the probability 1−α. The branching of the particle is governed
by the offspring generating function

F(s)
def
= Esξ =

∑∞
k=0

fks
k,

where fk, k > 0, is the probability to produce k offsprings, and f0 is a probability to die.
We suppose that F ′(1) = 1 + β̄c α

−1, where the explicit formula for β̄c is given below
in (2), and, moreover, we assume σ2 = F ′′(1) < ∞. Further, we will clarify why it is
natural to call such a process the critical one. The probability of the transition from the
origin to a point y 
= 0 equals a(0, y) = −(1 − α)a(y)a−1(0). The new particles behave
independently and stochastically in the same way as the parent ones.
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In what follows, we often assume that the starting point is x = 0.
According to the notation of [15], we will write

f̄(s) = α

⎛⎝∑
k �=1

fks
k + (f1 − 1)s

⎞⎠ = α(F(s) − s).

Let p̄(t, x, y) be the transition probability of a random walk for the CBRW model,
that is, the probability that, after starting at the time t = 0 at a point x, the particle
is located at a point y at a time t. We now introduce the Laplace transform of the
transition probability

Gλ(x, y) =
∫ ∞

0

e−λtp̄(t, x, y) dt, x, y ∈ Z3, λ ≥ 0.

By ζ(t), we denote the number of particles at the origin and write μ(t) for the number
of particles outside the origin and η(t) = ζ(t) + μ(t) for the total number of particles on
the lattice at a time t.

The following theorem establishes the limit behavior for the generating function

F (s, t, x) = Exs
η(t)

of the total number of particles and for the survival probability of the population of
particles Q(t, x) = 1− F (0, t, x), provided that the process starts at x.

Theorem 1.1. For any s ∈ [0, 1] and x ∈ Z3, one has

lim
t→∞F (s, t, x) = 1− c3(s, x), lim

t→∞Q(t, x) = c3(x),

where c3(x) = c3(0, x) > 0, and c3(s, x) is the unique root of the equation

(1)
1− c3(s, x)− s

G0(x, 0)
= f̄(1 − c3(s, 0)).

Corollary 1.1. Let s ∈ [0, 1] and x ∈ Z3. There exists

lim
t→∞ Ex{sη(t)|η(t) > 0} =

(1− β̄cG0(x, 0))s+ β̄cG0(x, 0)(c3(0)− c3(s, 0))
1− β̄cG0(x, 0)(1 − c3(0))

,

where

(2) β̄c =
1

G0(0, 0)
> 0.

The asymptotics of the probability q(t) = P0(ζ(t) > 0) of nondegeneracy at the origin
is given by

Theorem 1.2. As t→∞, the following relation is valid:

q(t) ∼ 2γ3
√
π a(0)

α(α − 1)σ2G
2

0 (0, 0)

1√
t ln t

.

Here, γ3 is a positive constant calculated in [10], p. 31.

The next theorem describes the limit behavior of properly normed ζ(t) given ζ(t) > 0.

Theorem 1.3. For every λ ∈ [0,∞), one has

lim
t→∞E0

(
exp

{
− λ ζ(t)

E0(ζ(t)|ζ(t) > 0)

}∣∣∣∣ ζ(t) > 0
)

=
1

λ+ 1
.

Note that the last expression is the Laplace transform of the exponential distribution
with parameter 1.

Since the random walk on Z3 under consideration is transient, it is natural for the
particles outside the origin at a time t to distinguish between those of a finite lifetime
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(they will return to the source eventually) and the infinite lifetime (they will walk on
Z3\0). Let μ0(t) and μ1(t) be the number of particles outside the origin of a finite lifetime

and of the infinite lifetime, respectively, at the time t. Hence, η0(t)
def
= ζ(t) +μ0(t) is the

total number of particles with a finite lifetime.

Theorem 1.4. If s1, s2 ∈ [0, 1], then

lim
t→∞E0(s

ζ(t)
1 s

μ0(t)
2 |η0(t) > 0) = 1−√1− s2.

Remark 1.1. These results imply that, in contrast to the model where F ′(1) > 1+ β̄cα
−1

(see [15]), the total number of particles does not grow exponentially when F ′(1) =
1 + β̄cα

−1. This observation justifies the term critical branching random walk.

2. Auxiliary Results

In view of the formulas for the CBRW transition probabilities (see [15]), the following
backward Kolmogorov equations for p̄ (t, x, y) hold:

(3) ∂tp̄(t, x, y) = (Āp̄(t, ·, y))(x), p̄(0, x, y) = δy(x), x, y ∈ Z3.

Here, the matrix

Ā = (ā(u, υ))u,υ∈Z3 =
(
I +

(
α− 1
a(0)

− 1
)
δ0δ

T
0

)
A

specifies a linear bounded operator in the Banach space l∞(Z3). Its action is given by
the rule

(Ā r(·))(u) =
∑

υ∈Z3
ā(u, υ)r(υ), r(·) ∈ l∞(Z3).

As usual, I is the identity operator in the mentioned space, δ0 is the column vector such
that δ0(0) = 1 and δ0(x) = 0 for x 
= 0, whereas T denotes the transposition.

We consider Eq. (3) as an inhomogeneous one for the differential equation

(4) ∂tp(t, x, y) = (Ap(t, ·, y))(x), p(0, x, y) = δy(x), x, y ∈ Z3.

The solution of the last equation is studied in [10] in detail. In particular, as was shown
there, the SBRW transition probabilities p(t, x, y) for x, y ∈ Z3 possess the property

(5) Gλ(x, y)
def
=
∫ ∞

0

e−λtp(t, x, y) dt <∞, λ ≥ 0, x, y ∈ Z3.

Lemma 2.1. The following equality is valid:

G0(0, 0) =
a(0)
α− 1

G0(0, 0).

Proof. Apply the constant variation formula to Eqs. (3) and (4). Then, for x = y = 0,
we obtain

(6) p̄(t, 0, 0) = p(t, 0, 0) +
(

1− a(0)
α− 1

)∫ t

0

p(t− u, 0, 0)∂up̄ (u, 0, 0) du.

Since ∫ ∞

0

e−λtp̄ ′(t, 0, 0) dt = λGλ(0, 0)− 1,

implementing the Laplace transformation of both sides of (6) yields

Gλ(0, 0) =
a(0)Gλ(0, 0)

α− 1− λ(α − 1− a(0))Gλ(0, 0)
.

Setting here λ = 0 proves the claim. �
Due to [15] and Lemma 2.1, one has β̄c = 1/G0(0, 0). Moreover, relation (5) and

Lemma 2.1 entail the inequality G0(0, 0) <∞ that amounts to β̄c > 0.
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For a function χ(t), t ≥ 0, we set

χ̂(λ)
def
=
∫ ∞

0

e−λtχ(t) dt, λ ≥ 0.

Moreover, if χ(t) is nonnegative and nondecreasing, then

χ̌(λ)
def
=
∫ ∞

0

e−λt dχ(t), λ ≥ 0.

We temporarily forget that there is the source of branching on the lattice and consider
an ordinary random walk on Z3 with generator Ā. Denote, by τ1, the time spent by a
particle at the origin until it leaves the origin. Then

G1(t)
def
= P0(τ1 ≤ t) = 1− e−(1−α)t.

Let τ2 be the time spent by this particle outside the origin until its first return to the
origin. The corresponding distribution function is defined by way of

G2(t, x)
def
= Px(τ2 ≤ t).

Here, x ∈ Z3 indicates the starting point of the random walk.
Assume that the random walk starts at a point x ∈ Z3 at the initial time t = 0. In

what follows, we will be interested in the probability of the event that the particle will
never hit the origin. It is defined to be

q(x)
def
= lim

t→∞ (1−G2(t, x)).

Lemma 2.2. If x 
= 0, then

q(x) = 1− G0(x, 0)
G0(0, 0)

= 1− β̄cG0(x, 0).

Proof. Using the continuous analog of the total probability formula, one has

p̄(t, x, 0) =
∫ t

0

p̄(t− u, 0, 0) d(G2(x, ·) ∗G1)(u),

where ∗ denotes the convolution. Apply the Laplace transformation to both sides of the
previous equation. In view of the relation

Ǧ1(λ) =
1− α

λ+ 1− α,
we get

Ǧ2(x, λ) =
Gλ(x, 0)(λ+ 1− α)
Gλ(0, 0)(1− α)

∼ G0(x, 0)
G0(0, 0)

, λ→ 0 + .

Since lim
λ→0

∫∞
0
e−λt dG2(t, x) =

∫∞
0
dG2(t, x) = lim

t→∞G2(t, x), we complete the proof of

the lemma. �
Return to the CBRW model. The rest of the section is devoted to the investigation

of the first local moments m1(t, x, 0)
def
= Exζ(t), t ≥ 0, x ∈ Z3. In particular, we dwell

on the asymptotic behavior of the function m1(t)
def
= m1(t, 0, 0).

We will often use the properties of the first local moments m1(t, x, 0), t ≥ 0, x ∈ Z3,
introduced for SBRW model. These properties are described in [10] in detail. For brevity,

we will write m1(t)
def
= m1(t, 0, 0),

Mλ(x, y)
def
=
∫ ∞

0

e−λtm1(t, x, y) dt, Mλ(x, y)
def
=
∫ ∞

0

e−λtm1(t, x, y) dt.
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Lemma 2.3. The function m1(t) is monotone decreasing, and, as t→∞, one has

m1(t) ∼ (α− 1)G
2

0 (0, 0)
a(0) γ3

√
π
√
t
.

Proof. As was shown in [15], the first moment of the number of particles at the source
satisfies the differential equation

(7) ∂tm1(t, x, 0) = (Ām1(t, ·, 0))(x) + β̄c(Δ0m1(t, ·, 0))(x)

with the initial condition m1(0, x, 0) = δ0(x). Here, the linear bounded operator Δ0
def
=

δ0δ
T
0 acts in the space l∞(Z3). Consider the above equation as inhomogeneous for the

differential equation (see [10], Theorem 1.3.1.)

(8) ∂m1(t, x, 0) = (Am1(t, ·, 0))(x) + βc(Δ0m1(t, ·, 0))(x)

with the initial condition m1(0, x, 0) = δ0(x). The constant variation formula combined
with Lemma 2.1, the equality βc = (G0(0, 0))−1 (see [10]), and the relation

(Ām1(t, ·, 0))(0) =
a(0)
α− 1

(∂tm1(t, 0, 0)− β̄cm1(t, 0, 0))

yields

(9) m1(t, x, 0) = m1(t, x, 0) +
(

1− a(0)
α− 1

)∫ t

0

m1(t− u, x, 0) ∂um1(u, 0, 0) du.

E.B. Yarovaya established the monotonicity of m1(t) by reducing the asymmetric
operator Ā to a self-adjoint one (see [16]) and then using the same methods as were
employed to prove the monotonicity of m1(t) in Lemma 3.3.5 in [10]. Thus, we turn to
determining the asymptotics of m1(t) as t→∞.

We now perform the Laplace–Stieltjes transformation of both sides of (9) when x = 0.
Since ∫ ∞

0

e−λtdm1(t) = λMλ(0, 0)− 1,

we get

(10) Mλ(0, 0) =
a(0)Mλ(0, 0)

α− 1− (α− 1− a(0))λMλ(0, 0)
.

The asymptotic behavior of m1(t) found in [10] is as follows:

(11) m1(t) ∼ G2
0(0, 0)

γ3
√
π
√
t
, t→∞.

Hence, the application of a Tauberian theorem (Theorem 4, Ch. XIII, §5, [17]) implies

Mλ(0, 0) ∼ G2
0(0, 0)
γ3

√
λ
, λ→ 0 + .

On account of (10) and Lemma 2.1, we obtain the asymptotics

(12) Mλ(0, 0) ∼ (α − 1)G
2

0(0, 0)
a(0) γ3

√
λ

, λ→ 0 + .

Using the mentioned Tauberian theorem and the monotonicity of m1(t), t ≥ 0, leads to
the second part of the required statement. �

3. The Total Number of Particles

In this section, we will prove Theorem 1.1 and derive its Corollary 1.1.
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By Theorem 1 in [15], the generating function F (s, t, x), s ∈ [0, 1], t ∈ [0,∞), x ∈ Z3,
satisfies the differential equation in the Banach space l∞(Z3)

(13) ∂tF (s, t, x) = (ĀF (s, t, ·))(x) + (Δ0 f̄ (F (s , t , ·)))(x )

with the initial condition F (s, 0, x) = s. Taking (3) into account and employing the
constant variation formula (see [18], p. 105), we infer from the last equation that

(14) F (s, t, x) = s+
∫ t

0

p̄(t− u, x, 0)f̄(F (s, u, 0)) du.

The function F (s, t, x) is monotone in the variable t, when s and x are fixed. This
claim is based on the existence of positive solutions of differential equations in l∞(Zd)
with the off-diagonal positive right-hand side. In its turn, the proof of the last fact is a
counterpart of that for finite-dimensional spaces (for the latter, see [19], p. 63).

The monotonicity in t and the boundedness of F (s, t, x) entail the existence of a limit
lim
t→∞F (s, t, x) = 1− c3(s, x), when s ∈ [0, 1] and x ∈ Z3 are fixed. Let us determine the

limit function c3(s, x). We let t tend to infinity in (14) and use the lemma on asymptotic
properties of integral convolutions of functions of the power-logarithmic kind (see Lemma
5.1.2. in [10]) to derive the equation

(15) 1− c3(s, x) = s+G0(x, 0)f̄ (1− c3(s, 0))

which is equivalent to (1). For x = 0, the last equation can be rewritten as follows:

(16) (1− s)β̄c = f̄(1 − c3(s, 0)) + β̄c c3(s, 0).

The continuous function f̄(1 − y) + β̄cy is increasing on [0, 1] and varies from 0 to the
value greater than β̄c. One has (1− s)β̄c ≤ β̄c for every s ∈ [0, 1]. Hence, there exists the
unique root c3(s, 0) of Eq. (16). Therefore, we can claim the existence and uniqueness
of c3(s, x) satisfying (15).

To complete the proof of Theorem 1.1, we will demonstrate the positivity of c3(x) =
c3(0, x), x ∈ Z3. Indeed, assuming that c3(0) = 0, we arrive at a contradiction, as it
does not verify (1) for x = s = 0. Hence, c3(0) > 0. If x 
= 0, then the desired fact ensues
from the inequalities

G0(x, 0) =
a(0)
α− 1

G0(x, 0) ≤ a(0)
α− 1

G0(0, 0) = G0(0, 0),

c3(x) = 1−G0(x, 0)f̄(1− c3(0)) ≥ 1−G0(0, 0)f̄(1− c3(0)) = c3(0) > 0.

Note that the first of them is a consequence of expression (2.2.2) in [10].
The proof of Theorem 1.1 is complete. �
In view of Theorem 1.1, one has

(17) lim
t→∞Ex(sη(t)|η(t) > 0) = lim

t→∞
F (s, t, x)− (1 −Q(t, x))

Q(t, x)
=
c3(x) − c3(s, x)

c3(x)
.

Since β̄c = (G0(0, 0))−1, Eq. (1) guarantees that

c3(s, x) = 1− s(1− β̄cG0(x, 0))− β̄cG0(x, 0)(1− c3(s, 0)).

The corollary is now evident due to the explicit expression for c3(s, x) and (17). �

4. Equations for Joint Generating Functions

Define the joint generating function for three random variables, being the number
of particles at the origin, outside the origin with a finite lifetime and infinite lifetime,
respectively, by way of

F (t, s1, s2, s3, x) = Exs
ζ(t)
1 s

μ0(t)
2 s

μ1(t)
3 , s1, s2, s3 ∈ [0, 1], t ≥ 0, x ∈ Z3.
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Taking the particle evolution during the time interval [0, h] into account and using a
Markov property of the random walk and the branching as well, we set up the differential
equation for the introduced function (compare with Lemma 1.2.1 in [10])

(18) ∂tF (t, s1, s2, s3, x) = (ĀF (t, s1, s2, s3, ·))(x) + (Δ0f̄(F (t, s1, s2, s3, ·)))(x).
Starting from a point x 
= 0 at the initial time t = 0, the particle has the infinite lifetime
with the probability q(x) and has a finite lifetime with the probability 1− q(x). Hence,
the initial condition for (18) is as follows:

(19) F (0, s1, s2, s3, x) = δ0(x)(s1 − s2) + s2 + q(x)(s3 − s2)(1 − δ0(x)).
Introduce an auxiliary function

F1(t, x)
def
= F (t, s1, s2, s3, x)− s2 − q(x)(s3 − s2)(1− δ0(x)).

For brevity, we will omit some of its arguments. Note that

∂tF1(t, x) = ∂tF (t, s1, s2, s3, x),

(ĀF1(t, ·))(x) = (ĀF (t, s1, s2, s3, ·))(x) − δ0(x)β̄c(s3 − s2),

because combining the formulas for q(x) and for G0(x, 0) with equation (3) shows that
the following equality is valid:

(Ā q(·)(1 − δ0(·)))(x) = −β̄c
∑
x′∈Z3

ā(x, x′)G0(x′, 0)

= −β̄c
∫ ∞

0

(Āp̄(t, ·, 0))(x) dt = −β̄c
∫ ∞

0

dp̄(t, x, 0).

Thus, F1(t, x) satisfies the differential equation

∂tF1(t, x) = (ĀF1(t, ·))(x)
+ (Δ0 [f̄(F1(t, ·) + s2 + q(·)(s3 − s2)(1− δ0(·))) + β̄c(s3 − s2)])(x)

with the initial condition F1(t, x) = δ0(x)(s1 − s2).
Consider the last equation as an inhomogeneous one for the differential equation

∂tM1(t, x) = (ĀM1(t, ·))(x) + β̄c(Δ0M1(t, ·))(x)
with the initial condition M1(0, x) = δ0(x)(s1 − s2). The solution of the above equation
is M1(t, x) = (s1 − s2)m1(t, x, 0). Applying the constant variation formula gives us the
integral equation

F1(t, x) = (s1 − s2)m1(t, x, 0)

+
∫ t

0

m1(t− u, x, 0)[f̄(F1(u, 0) + s2) + β̄c(s3 − s2)− β̄cF1(u, 0)] du.

Returning to the initial notation, we get

F (t, s1, s2, s3, x) = s2 + q(x)(s3 − s2)(1− δ0(x)) + (s1 − s2)m1(t, x, 0)(20)

+
∫ t

0

m1(t− u, x, 0)[f̄(F (u, s1, s2, s3, 0)) + β̄cs3 − β̄cF (u, s1, s2, s3, 0)] du.

It is possible to introduce a joint generating function of another kind. There are no
difficulties in deriving integral equations for other joint generating functions from Eq.
(20). Further, we will need some of them. In particular, we set q(t, s)

def
= 1 − E0s

ζ(t).
Substituting s1 = s and s2 = s3 = 1 in (20) leads to the relation

(21) q(t, s) = (1− s)m1(t)−
∫ t

0

m1(t− u)h(q(u, s)) du,

where h(x)
def
= f̄(1− x) + β̄cx.
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Setting s3 = 1 in (20) yields

(22) Q(t, s1, s2) = 1− s2 − (s1 − s2)m1(t)−
∫ t

0

m1(t− u)h(Q(u, s1, s2)) du.

Here, Q(t, s1, s2)
def
= 1− E0s

ζ(t)
1 s

μ0(t)
2 .

5. Particles at the Origin

The size of the paper allows us to give only a sketch of the proofs of Theorems 1.2
and 1.3. Substituting s = 0 in (21), we get the integral equation for the probability q(t)
of nondegeneracy at the origin. The obtained equation is similar to Eq. (22) in [11] for
the same probability in the CBRW model in the case of the lattice Z. Furthermore, in
view of Lemma 2.3 of the present paper and Lemma 8 in [11], the asymptotic behavior
of m1(t) in these models is the same up to a constant factor. Hence, the asymptotics of
q(t) in CBRW models on Z and on Z3 coincides modulo a constant factor. Thus, the
further proof of Theorem 1.2 is performed in the same manner as that of Theorem 2 in
[11].

With regard to Theorem 1.3, one has the analogous situation. Moreover, by reason of
the coincidence of the asymptotics of the first local moments and due to the similarity
of the integral equation (21) and the equation in [12] for the same generating function in
the model of CBRW on Z, the corresponding conditional limit theorems have a similar
form. So the proof of Theorem 1.3 repeats that of Theorem 4 in [12] almost literally.

6. Joint Conditional Limit Distribution

This section is devoted to the proof of Theorem 1.4. Let us begin with determining the
asymptotic behavior of Q(t, s, s) = 1−E0s

η0(t). This function is a solution of the integral
equation (22) when s1 = s2 = s. The argument analogous to that in Section 3 of the
present paper leads to the proof of the monotonicity of Q(t, s, s) in the variable t when s
is fixed. By virtue of the monotonicity in t and the boundedness of Q(t, s, s), there exists
a limit of this function as t → ∞. The limit equals zero since, otherwise, the integral
on the right-hand side of (22) diverges. Thereby, Q(t, s, s) = o(1), t → ∞, s ∈ [0, 1].
Consequently, we have

Q̂(λ, s, s) = o(λ−1), λ→ 0 + .

On account of Lemma 2.3, applying the Laplace transformation to both sides of (22)
when s1 = s2 = s gives

ĥ(λ, s, s) ∼ 1− s
λMλ(0, 0)

∼ (1− s) a(0) γ3√
λ(α − 1)G

2

0 (0, 0)
, λ→ 0 + .

Therefore, by a Tauberian theorem (Theorem 4, Ch. XIII, §5, [17]), we get

h(Q(t, s, s)) ∼ (1− s) a(0) γ3√
t
√
π(α− 1)G

2

0 (0, 0)
, t→∞.

In view of h(x) ∼ ασ2x2/2, x→ 0+, one has

(23) Q(t, s, s) ∼
√

2(1− s) a(0) γ3

ασ2
√
π(α− 1)G

2

0 (0, 0)
· 1

4
√
t
, t→∞.

Next we show that

(24) Q(t, s1, s2)−Q(t, s2, s2) = o(Q(t, 0, 0)), t→∞.
Actually, the above relation follows from Theorem 1.2, formula (23), and the inequality

|Q(t, s1, s2)−Q(t, s2, s2)| = |E0s
μ0(t)
2 (sζ(t)1 − sζ(t)2 )| ≤ |E0(s

ζ(t)
1 − sζ(t)2 )| ≤ q(t).
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Combining the relation (24) and the chain of relations

lim
t→∞E0(s

ζ(t)
1 s

μ0(t)
2 |η0(t) > 0)

= lim
t→∞

Q(t, 0, 0)−Q(t, s1, s2)
Q(t, 0, 0)

= lim
t→∞

Q(t, 0, 0)−Q(t, s2, s2)
Q(t, 0, 0)

with (23) completes the proof of Theorem 1.4. �
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