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S. V. AZARINA

INCLUSIONS FOR GENERATORS OF EVOLUTION FAMILIES AND
STOCHASTIC FLOWS

Some inclusions for generators of Feller evolution families are considered. The exis-
tence of solutions of these inclusions is proved with the use of stochastic flows having
the same generators as the evolution families.

We study the solvability of inclusions given in terms of generators of Feller evolution
families. We consider the cases where it turns out that the right-hand side of such an
inclusion has a selection generating unique Markov process. A more general case will be
considered in future works.

1. Generators

1.1. Generator of the evolution family of operators. By definition, a function f
on Rn belongs to C0(Rn) if it is continuous and if, for every ε > 0, there exists a compact
subset Kε of Rn such that ‖f(x)‖Rn < ε for each x /∈ Kε.

We recall that the family of operators U(s, t) (take t ≥ s) on C0(Rn) it is called the
Feller evolution family if the following properties hold:

(1) the evolution property U(s, τ)U(τ, t) = U(s, t) (s ≤ τ ≤ t) and U(s, s) = I;
(2) operators U(s, t) acts in C0(Rn): U(s, t)(C0(Rn)) ⊂ C0(Rn);
(3) operators U(s, t) are strongly continuous jointly in both parameters;
(4) for any f ∈ C0(Rn), 0 ≤ f ≤ 1, and t ≥ s ≥ 0, the inequality 0 ≤ U(s, t)f ≤ 1

holds.
The infinitesimal generator of such a family is the operator G(s, x) such that its action

on every function from C0(Rn) is given by the formula

G(s, x)f(x) = lim
t↓s

U(t, s)f(x) − f(x)
t− s .

For more details, see, e.g., [1, 2].

1.2. Generator of the stochastic flow. Take mappings a(t, x) and A(t, x) from R×
Rn to Rn and the set of linear operators on Rn, respectively. Consider the stochastic
dynamical system in Rn governed by an equation of the Itô type

(1)
{
dξs,x(t) = a(t, ξs,x(t))dt +A(t, ξs,x(t))dw(t),
ξs,x(s) = x.

given on a certain probability space (Ω,F ,P), where w(t) is a Wiener process on that
space with values in Rn; 0 ≤ s ≤ t ≤ T . We recall that the infinitesimal generator of
this stochastic evolution family of processes is the operator G(s, x) which acts on the
functions f ∈ C(Rn,R) in the following way:

G(s, x)f(x) = lim
t↓s

E[f(ξs,x(t))]− f(x)
t− s ,
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where E is the expectation. Then, for f ∈ C2(Rn,R), it can be written in the form

G(s, x) = ai(s, x)
∂

∂qi
+

1
2
(AA∗)ij(s, x)

∂2

∂qi∂qj
,

where qi, i = 1, 2, . . . , n are coordinates in Rn.
By μs,x, we denote the measures on the space of sample paths corresponding to the

solutions ξs,x(t) of (1).

2. Inclusion for the generator of the evolution family

We start this section by recalling some definitions from the set-valued analysis (see,
e.g., [3]).

Let X and Y be metric spaces, and let F be a set-valued map from X to Y .

Definition 2.1. A set-valued map F is called lower semicontinuous at x ∈ X if, for each
ε > 0, there exists δ > 0 such that, for every x′, from a δ-neighborhood of x, the image
F (x) belongs to an ε-neighborhood of F (x′).

Definition 2.2. Let X and Y be normed spaces. A set-valued map F from X to Y is
called Lipschitz continuous at x ∈ X if there exist k > 0 and neighborhood U of x such
that

∀x1, x2 ∈ U, F (x1) ⊂ F (x2) + k‖x1 − x2‖BY ,
where BY is a unit ball in Y . It is called Lipschitz continuous if it is Lipschitz continuous
at each point x ∈ X, and the constant k is independent of x.

Denote the norm of a set-valued map in a standard way:

‖F (x)‖ = sup
y∈F (x)

‖y‖.

Consider a set-valued semielliptic differential operator G(s, x) on R × Rn. It can be
written in the form

G(s, x) = ai(s, x)
∂

∂qi
+ αij(s, x)

∂2

∂qi∂qj
,

where a(s, x) and α(s, x) are set-valued mappings from R×Rn to Rn and to S̄+(n) (set
of all positive semidefinite symmetric square matrices of dimension n), respectively.

Remark 2.1. To avoid misunderstandings, we will call a set or single-valued differential
operator semielliptic if its second order part takes values in the space S̄+(n) (i.e., matrices
may degenerate) and elliptic if they lie in S+(n) (positive definite symmetric square
matrices).

In Rn, it is convenient to introduce the norm of the semielliptic differential operator
G(s, x) as a sum of the norms of its components, i.e., the norm of a vector of the first
order part plus the norm of a matrix of the second order part.

By I, we denote a closed interval in R.

Theorem 2.1. Suppose that the measurable set-valued semielliptic differential operator
G(s, x) has a second-order term α(s, x) single-valued C2-smooth in x and satisfies the
inequality

(2) ‖a(s, x)‖2 + ‖trα(s, x)‖ � K(s)(1 + ‖x‖2)
for some function K(s) on I. Then there exists the Feller evolution family with generator
G(s, x) such that the inclusion

(3) G(s, x) ∈ G(s, x)

holds for all (s, x) from I × Rn.
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Proof We recall that there exists a measurable selection G(s, x) of the set-valued map
G(s, x) (see, e.g., [3]). Since G(s, x) is a semielliptic differential operator, its selection
G(s, x) can be written in the form

(4) G(s, x) = ai(s, x)
∂

∂qi
+ αij(s, x)

∂2

∂qi∂qj
,

where a(s, x) is measurable, and α(s, x) is the above-mentioned positive semidefinite
symmetric C2-smooth matrix. By [4, Theorem 1], there exists the Lipschitz continuous
A(s, x) such that α(s, x) = A(s, x)A∗(s, x). Since estimate (2) holds, the stochastic
equation without drift

dξ̃s,x(t) = A(t, ξ̃s,x(t)dw(t),

where w(t) is a Wiener process in Rn, has the unique strong solution for each initial data
ξ̃s,x(s) = x. Then, by results of [5], the equation with drift a(t, x)

dξs,x(t) = a(t, ξs,x(t)dt+A(t, ξs,x(t)dw(t),

has the unique weak solution for each initial data. Hence, the unique week solution ξ(t),
t ∈ I, of the equation

dξ(t) = a(t, ξ(t))dt+A(t, ξ(t))dw(t)

exists. It is such that, for t ∈ I, t ≥ s, it coincides with ξs,x(t) with probability 1.
This solution (see, e.g., [2]) is a Markov process. Thus, we get a dynamical system of

form (1), and the operators U(t, s) defined as U(t, s)f(x) = E(f(ξs,x(t))) form a Feller
evolution family with the generator G(s, x). So, inclusion (3) holds for each (s, x) ∈
I × Rn. �

Theorem 2.2. Suppose that a set-valued elliptic differential operator G(s, x) is such
that a(s, x) and α(s, x) are Lipschitz continuous (in set-valued sense), and their values
belong to the sets of nonempty closed convex subsets of Rn and S+(n), respectively. Let
also inequality (2) hold. Then there exists a Feller evolution family such that inclusion
(3) holds for all (s, x) from I × Rn.

Proof By [3, Theorem 9.4.3], there exists the Lipschitz continuous selection G(s, x)
of the set-valued map G(s, x). Obviously, it satisfies estimate (2). From the fact that
α(s, x) is non-degenerate, it follows that there exists the Lipschitz continuous A(s, x)
such that A(s, x)A∗(s, x) = σ(s, x).

By the existence theorem on strong solutions (see, e.g., [5]), the equation

dξs,x(t) = a(t, ξs,x(t)dt+A(t, ξs,x(t)dw(t),

has the unique strong solution ξs,x(t) starting at the moment s from the point x.
As in Theorem 2.1, we construct the Feller evolution family by the rule U(t, s)f(x) =

E(f(ξs,x(t))). Its generator satisfies inclusion (3). �
Suppose that a set-valued elliptic differential operator G(s, x) is lower semicontinuous

and has convex closed images. Then, by Michael’s selection theorem (see, e.g., [3]), it
has a continuous selection G(s, x). Since G(s, x) is elliptic, i.e., the matrix α(s, x) of
the second-order part is non-degenerate, there exists the continuous matrix A(s, x) such
that α(s, x) = A(s, x)A∗(s, x) (see [6]). This matrix A(s, x) together with the first-order
term a(s, x) of G(s, x) determine the stochastic differential equation of form (1) with
continuous coefficients. Let inequality (2) hold. Then the above equation has a weak
solution for each initial data for t ∈ I, t ≥ s. Assume also that those solutions are weakly
unique.

Theorem 2.3. Under the above assumptions, there exists a Feller evolution family such
that inclusion (3) holds for all (s, x) from I × Rn.
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Proof. Since the above-mentioned solutions are weakly unique, they are Markov
processes. So, the family U(t, s)f(x) = E(f(ξs,x(t))) is an evolution one (see [2]), whose
generator satisfies (3) by construction. �
Some parabolic differential inclusions. As in, e.g., [7], consider a function u(s, x),
s ∈ R, x ∈ Rn. Let L(s, x) be a set-valued second-order semielliptic differential operator.
Consider a parabolic differential inclusion of the following type

(5)
∂

∂s
u(s, x) ∈ L(s, x)u(s, x).

For any initial value u(t, x) = φ(x), the solution u(s, x) of (5) can be constructed as
u(s, x) = U(t, s)φ(x), where U(t, s) is the Feller evolution family.

So it is possible to find a solution u(t, x) of (5) if it is possible to find a solution of
inclusion (3).
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