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ASYMPTOTIC PROPERTIES OF Lp-ESTIMATORS

Some sufficient conditions for consistency and asymptotic normality of a non-linear
regression parameter Lp-estimator are presented for a continuous time regression
model with Gaussian stationary noise possessing the long-range dependence or weak
dependence property.

INTRODUCTION
Consider a regression model
X(t)=g(t,0) +e(t), t =20,

where g : [0,00) x ©¢ — R! is a continuous function, ©¢ is a closure in R™ of an open
bounded convex set ©, 6 € O. It is supposed that

A;. e(t), t € R! is a real measurable mean-square continuous stationary Gaussian
process defined on the complete probability space (2, F, P), E=(0) = 0.

Definition. Any random variable (r.v.) §T having a property

T
Qur(br) = inf Qur(r), Qur(r) = [ 1X(®) - g(t. )Pt 1< p < o
T 0
is said to be an Ly-estimator of the unknown 0 € ©.

It follows from [1-3] that our assumptions provide the existence of the L,-estimator.
L,-estimators belong to a wide class of M-estimators [4] and use the loss function
p(z) = |z|P. Least squares estimators (p = 2) and least moduli estimators (p = 1) are
the most studied Ly-estimators [5,6]. The discription of the asymptotic properties of
L,-estimators for p € (1,2) is a challenging theoretical problem. For linear and nonlinear
regression models with discrete time and independent identically distributed observation

errors, the consistency and asymptotic normality of I,-estimators were considered in [4,
6-10].

1. CONSISTENCY OF L,-ESTIMATORS

0
Suppose g(t,-) € C1(O°); gi(t,0) = 59, 9(5:0);

T
d2-(0) :/0 gi(t,0)dt, i =1,...,m; d7.(0) = diag (di;(9)),", ;

lim 77 'd2:(0) >0, i =1,...,m.

T—o0
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1

Let Up(6) = T~ 2dp(0)(© — 0); Gy = T~ 2dp(0)(Br — 0); f(t,u) = g(t,0 + T2dy (0)u);
T
fi(ta ’LL) = gz(t7 0 + T%d;l(e)u)a (I>I)T(u17u2) = / |f(ta ’Ltl) - f(t7u2)|pdt7
0

Qur(u) = Qpr(0 + Tdy' (9)u), u € UF(O);
v(r) ={u e R™: |u|| <r}, pp = Ele(0).
B;. For any R > 0, there exist k(R) < +o00, i = 1,...,m such that

sup sup |gi(t, 0+ T2dy (0)u)|d; (0) < k' (R)T ™Y/,
uweUg(0)Nve(R) te[0,T]

C; (contrast condition). For any r > 0, there exists A(r) > 0 such that

1 ~1 1 ~1
1 inf T »EQ? >T PEQIA(0 A
) ot TR () 2 T EEQL0) + A,

1
and A(Ry) = popg + Ao for some Ry > 0, where pg > 2 and Ag > 0 are some numbers.
Ay, e(t), t € Rl is a strongly dependent process, namely: B(t) = Ee(t)e(0) =
L([t])
[t
B(0) = 1.
A;. Be Ll(Rl), B(O) =1.

0 < a < 1, where L(t), t € [0,00) is a function slowly varying at infinity,

Theorem 1. For anyr >0 as T — oo:
1) under assumptions A1, Ag, By, and Cq,

(2) P{llur| =r} = O(B(T));
2) under assumptions A1, Ag, By, and Cy,
(3) P{lar| = r} =0(T7").

We will give an outline of the proof of statement (2). The proof of (3) is similar. Let

1 ~

1 1
hr(0,u) = Qpp(u) — EQr(u).
By the definition of L,-estimator,

1

1
Qpr(ur) < hr(0,0) + EQ;r(0) aus.
Therefore, by condition C; for v € (0,1), one has

P{llir] > r} = P{|aT| > . QP (i) < hr(6.0) +E©§T<o>} <

P inf  T%
{uevae)\v(r) @

T*%hT(H,u) +T7%hT(970) > A(T)} <

IN

() < k(6,0 + BQJy(0)} <

S ASE I

IN

P {— inf
ueUS.(0)\v(r)

SP{ sup T7%|hT(9,U)| Z’YA(T)}"’
ueU$.(0)\v(r)

+P {T—%hT(a, 0)>(1- ’Y)A(T)} =
(4) = Pl + PQ.
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To estimate P,,, we set

£t) = ()P = s o =T / £(t)dt.

Using the expansion of the function |x|P in the Hilbert space La(RY, ¢(z)dz), p(x) =
2

(27r)*%e*x7, in Hermite polynomials, one can obtain the inequality (see, for example,
[5, 11])

T T
(5) EnZ < Dg(o)%/o /O B2(t — s)dtds.

Applying the standard argument [11, 12], it can be shown from A, and (5) that

nr — 0 a.s. If so, then
T—o0

1

T P 1

(6) =T ( / |e<t>|pdt> ~ uf as
0 T—o0
On the other hand, E¢}. = p, for any T. Therefore ([13], p. 105),
1 ~1 1

™ Ber = BT 5Q5(0)_~_uf.
and, for T > Ty and some 0 < Cy < (1 —v)A(r),

Po={Cr> (1- 1AW + Ber) < {cT > (1= )AW) + 1f — co} _

®) {2 (uh+0-0a0-60) -} = om0,

as follows from (5).
To estimate P;, one obtains, by the triangle inequality,

1 1 1 1 1
(9) (b;T (07 U’) - Q;T (0) S Q;;T (u) S (b;lT (Oa u) + Q;T(O)a
and, taking the expectations,

1 1 1 1 1
(10) —EQr(0) = ®/7(0,u) < —EQ 7 (u) < EQ(0) — ©;7(0,u).

The addition of inequalities (9) and (10) leads to the majorant

I0(0, u)| < Q2 (0) + EQ21(0).

Therefore,
(11) Py < P{C+ E¢r > 7A(r)}
2
Having taken in (11) r = Ry from condition C; and v = p—, we arrive at the inequality
0
1 1 2A
(12) P1SP{<T2(M5—ECT)+M;+p—0°}.

Relation (6) shows that, for T' > Ty,

v Ao 5, Do : 2
(13) P <P CTZM;D"’E =Pnr = o) = O(B*(T)).
Taking bound (8) for r = Ry and bound (13) into account, one has, for any r € (0, Ro),

P{lur|| =7} < P{Ro > [[ur| = r} + P {[[ur| = Ro}

(14) = P{Ry > ||ur|| > r} + O(B*(T)).
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As far as

1 ~1
15 inf PEQ inf T »EQr(u),
(15) u€UL(6)N(ve(Ro)\v(r)) r(w) 2 u€UL(9)\v(r)) pr(®)
condition Cj is fulfilled also for the left-hand side of inequality (15). So, as previously,
we obtain an inequality similar to (4) for " € (0,1):

P{Ro > ir] > 1} < P{ T (6,0) 27/A<r>}+

inf
ueUs, (0)0( ¢(Ro)\v(r))

(16) +P {T*th(e, 0)>(1- 7')A(7«)} < P + O(BX(T)),

P = P{ sup T % |hp(0,u)| > 'y'A(r)} :

u€US (0)Nve(Ro)
For any € > 0, R > 0, condition By yields the existence of 6 = §(e, R) > 0 such that

(17) sup T_lfpr(ul,ug) <e.
w1, u2 €US (u)Nve(R), [[ur—uz||<d

Let F ... F® be closed sets of diameters less than ¢ that corresponds to the

aA(r)y\” : .
number R = Ry and ¢ = — from inequality (17), and let ¢; € (0,1) be some

1
number, |J F® = v¢(Rp). If the points u; € FO NUS(0), i =1,...,lo, lp <1 are fixed,

then
(18)

lo
P3<ZP{ sup T-%|hT<9,u'>—hT<9,u">|+T—%|hT<9,ui)|>v'A<r>}.

uw ueFHONUL(0)
For «/,u"” € F_ one has, by inequality (17),
T |hr(8,u') = h(6,u")| <

Q') — Qp(u)

1

<7 + TP E|Qr () = QLp(u")| <

1
< 2T_%<I>;)’T(u',u”) < ey Alr)

and
(19) Py < ZP{ P (6,u)| = (1= )y A(R)}

For any u € v°(Rp), one obtains further

(20) [hr(0,0)] < |@hp(u) ~ (EQur(w)” | + (BQyr(w))” ~ BQjp(u) = a1 (u) + as(u).

Taking the expectation of both parts of the inequality

P

e1) 50}~ Gyt 2 (BQurw)” - Ayt

we derive the bound

1

(22) T has(u) <THE ‘Eéjm ~Gurw)|” <
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Let us use the notation
Af(t,u) = f(t,0) = f(t,u), £, u) = [e(t) + Af(t,u)P.
Then B, yields

(23) sup sup [Af(t, u)| < Rollk(Ro)ll,
ueU& (8)Nve(Ro) t€[0,T)

k(Ro) = (kl(Ro), ol kq(Ro)), and consequently,
EE(t,u) < 2271 (2 + (Ro|[k(Ro)[)*") = ¢2 < oo.

Therefore,

(24) cov (€(t,u), £(5,w) = 3 Emll “T)f,m(s’ W) gy — )
m=1 :

with

C(t,u) = /OO |z + Af(t,w)|P Hp(z)p(z)dz,

— 00
where Hy,(z), m > 1, are Hermite polynomials.
With regard for the relation

[e )

(25)

= Df(t7u) S C2,
we arrive at the bound [11]

T2DQur(u) =172 | ' / " cov (€t ), £(s, ) deds <
0 0

Smi% (T / / 2 ( tu)Bm(t—s)dtds> <

(26) < e /O /0 B(t — s)dtds = O(B(T)),
and
(27) T~ vay(u) = O(B (T)).

On the other hand,

(28) T vai(u) <T (u) — EQur(u)

Due to (26)-(28) for any number 0 < ¢z < (1 — ¢1)y'A(r) and u € v¢(Ry) for T > Ty,
PLT 5 (0] > (- )y A} < P{T @pr(w) — BQyr(w)| > &} <
(29) ¢5 PT7*DQyr(u) = O(B(T))

hence
(30) Py =0O(B(T)).

Relations (16) and (30) yield (2). B
Sometimes, it is sufficient to check a simpler modification of condition C;. For exam-
ple, if

(31) sup  sup [g(t, 1) — g(t,72)] < go < o0,
t>0 71,72€0°



ASYMPTOTIC PROPERTIES OF Lp-ESTIMATORS 65

then, to obtain (2) and (3) instead of (1), one can use the contrast inequality

1 ~ 1 1
32 inf TﬁE(E u>p> b+ A(r).
(32) st T (EQur(w)” =+ AW

Assuming

dir(0) < T2, i=1,...,m,
one can take the normalization
T~ 2dp(0) = L,

without loss of generality. Then Ur(f) = © — 6, QPT(u) = Qpr(0 + u) and so on.

Instead of the differentiability of g and assumption B, we suppose

Bs. Inequality (31) is valid, and for any & > 0, there exists 6 = d(e) such that

T

sup lg(t, 1) — g(t, 72)[Pdt < e.

T1,T2€0°: |11 —T2]|<d T 0
Instead of C;, we assume
Cy (contrast condition). For any r > 0, there exists A(r) > 0 such that

T
inf T*I/ t,0 4+ u) — g(t,0))%dt > A(r).
I CCUEM R OITEING

Theorem 2. If © is a bounded set, then under assumptions Ay, As, Ba, and Csy for

any r >0,
P{||éT 0| >r} =0(B(T)) as T — c.

A similar statement can be formulated for the process £(t), ¢t € R! with integrated
covariance function.

To prove the theorem, one has to check contrast conditions C; or (32). They can be
written now in the form of the following assumption:

For any r > 0, there exists A*(r) > 0 such that

inf T'FE > A* (7).
TE@U:1|1\’}F70HZT QpT(T) = Hp + (T)

Write
gO(t) = |g(ta 0) - g(t77)|'
The validity of C; follows from the inequalities

oo

(33) T EQu(r) ~ = 517 [ gite) [

0 go(t)

where |7 — 6| > r, A(r) is taken from Cq,

2P o(x)dxdt > gGoA(T) =A*(r) >0,

o0 1 .2
Go :/ wPo(z)dr, p(r) = —=e" 2,
go 27T

and go is defined in (31).

In fact, inequality (33) is true for any bounded, even continuously differentiable density
function on R! which is non-decreasing on (—o0, 0], and p, < oo [6].

Suppose

(34) g(t,0) = Z 9i(t)0:.

Then d2, = OT gZ(t)dt, i=1,...,m, dr = diag(d;r). Condition B; is transformed into
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B3. For some k! < +00, i=1,...,m,
dt < kT2
putEs lg: (D)l dip <
Set
T

Tt =dpdy | g®at)dt, i,l=1,...,m;
0
Jr = (J”) =1 andAmin (J7) is the least eigenvalue of a positive definite matrix Jy.
B4. Amm(JT) > A > 0.

Theorem 3. Let the regression function g be of the form (34) and satisfy assumptions
B3 and By. Then, for anyr >0 as T — oo:

1) P{||ur|| > r} = O(B(T)), if the process £(t), t € R, is subjected to Ay, As;

2) P{||ur|| > r} = O(T1), if the process €(t), t € RL, is subjected to Ay, As.

Outline the proof of 1). By the triangle inequality,

(35) T3 EQ7(u) > T3 02, (u,0) — T3 EQZ,(0).

Using (7), we conclude that condition Cy will be fulfilled if
(i) there exists Ry > 0 such that, for ||u|| > Ry and T > Tp,

Pt 1
(36) T 50 7(u,0) > 241§ + A(Ro),

where A(Ryp) has the same property as that in Cy;
(ii) for any 0 < r < Rp and r < ||u|| < Ry,

(37) T~ EQly(u) > puf + A(r, Ry)

for some A(r, Ry) > 0.
To check (36), we will use the representation

(38) T 10,7 (u,0) = T*l/
0

It follows from B3 that

m
1

Z gi(t)Ti dz_Tlul

=1

On the other hand, we have, by By,

(39)

T

(40) /Zgz T2leuz dt = ZJ fugug > A ul?,
o li= 1 i,0=1

and, therefore,

11
(41) T7r @y (u,0) = callull,
where

p-2
1 . P p—2
ey = A ( max k;’) -m 2 .
1<i<m

It is clear from (41) that inequality (36) can be satisfied by the proper choice of ||u]|.
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As follows from (7) and (27), condition (37) will be fulfilled for Ry > ||u|| > ro, if
1

(42 77 (EQur(w) = f + Aa(r. Ro)
or
(43) TﬁlE@pT(u) > pp + Do (r, Ro),

where Aq(r, Ro) and As(r, Roy) are some positive constants.
Similarly to (8),

T [e%e]
(44) T EQur) — = 577 [ 870y [ arposa
0 [Af(tu)]

If ||u|| < Ro, then we have, by inequality (23),

(45) / xPo(x)dx > / 2Po(z)dr = Gy > 0.
[Af(tu)] Rollk(Ro)ll

Thus, (44), (45), and (40) yield

(46) T EQur(u) — pp > gaox*ﬁ = Ao(r, Ro) > 0.

2. ASYMPTOTIC UNIQUENESS OF THE
SOLUTION TO A SYSTEM OF NORMAL EQUATIONS

If p(z) = |2[P, then p'(z) = ¢(z) = plz[P~'sgnz, p" =4’ = p(p — D|z["~?, = # 0, and
v(0) = oo
The Ly-estimator O is a solution to the system of "normal” equations

(47) grad (YT ' Qur (7)) = 0, v = (B ((0)) " >0
(48) grad (YT 7' Qpr(w)) =0, u=T"dr(0)(r - 0).

Assume © C R™ to be an open bounded set and g(t,-) € C?(©°¢). Write

2

9 g .
(t.0) = Gmalt0), 1 (0) = [ git0)ar, =1 m.

B52

1) sup sup |gi(t,7)|d;7 (6) < KT 3,
te(0,T] T€O°

2) sup sup |gil(t,T)|di_llT(9) < KlT- 3
te(0,T] T€O° ’

3) sup dar(T)dt(0)di(0) < kT2,
TEO®

T

1, 2 .
4) Td;TQ(Q)d;TQ(Q)f (gil(t79+T5dT1(9)u) _gil(tvg)) dt < kil”u”2a i,l=1,...,m.
0

Theorem 4. Suppose p € (g, 2). Then, under assumptions A1, Ag, By, Bs, and Cq,
the system of equations (47) (or (48)) has a unique solution with probability 1 —O(B(T))
as T — oo.

The idea of the proof consists in the comparison of two matrices

Hrp(u) = Hessian (’yTﬂ@pT(u)) and Jr(0).
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Using the inequality for symmetric matrices [14]
i (Hr (1) = AT (0))] < m - max | () — T (0)].

one can prove that Hp(u) is a positive definite matrix in some neighborhood of zero with
probability 1 — O(B(T)) as T — oc.

3. ASYMPTOTIC NORMALITY OF L,-ESTIMATORS

Assume further that there exist the limits A(f) = 1im J71(6) and
T—00

o(6) = Tim D (/ / Vg(tT,0)V*g (ST’0)>D;1(0),

T—o0 t— S|a

DZ(0) = T—d%(0).
It follows from Theorem 4 that one can apply the Brouwer fixed-point theorem to
prove

Theorem 5. Under assumptions of Theorem 4, the normalized L,-estimator
B~#(T)T~%dr(0)(0r — 6)
is asymptotically normal N (0, A(6)X(6)A(0)) r.v.

The details of the proof can be found in [11].
The results similar to Theorems 4 and 5 can be obtained for the process £(t), t € R
satisfying the weak dependence condition.
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